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Abstract. We consider fields which take random values over several decades. Starting from physical exam-
ples, we postulate that scale is not an absolute quantity. We then establish the equivalence between two
existing approaches based on scale symmetry arguments as general as possible. This yields a classification
of log-infinitely divisible laws, possibly universal. The physical significance of the parameters entering in
the classification is discussed.

PACS. 11.30.-j Symmetry and conservation laws

1 Introduction

The properties of many physical systems are described
by processes (= random fields) taking their value over a
few decades; velocity increments in turbulence, energy re-
leased by earthquakes, market rates in economics are often
quoted examples [1]. Such processes can exhibit different
statistical properties at different length, time or energy
scales `.

In preceding papers, we separately tried to classify
these statistics according to their dependance on scale,
using only very general symmetry arguments. One of us
suggested to characterize scale symmetry as a gauge in-
variance, i.e. a property of invariance through changes of
unit standards [2]; two of us suggested to link scale sym-
metry with a matricial group structure [3,4], following an
analogy with relativistic mechanics inspired by Nottale [5].
Both methods are similar in spirit but solutions exhibited
a few marked discrepancies. In this letter we show where
they arose from and how within the same fundamental
postulates, they mutually enlarge and enrich each other.

The connection between the two different approaches
might be achieved either by recasting the gauge invariance
formalism in a matrix form or by rederiving the approach
based on matrices labelled by a parameter. We chose the
latter in the following. However, we relax the constraint
that the group law for this parameter should be a simple
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addition. This allows for more different statistics, makes
both methods consistent and opens the possibility of a
complete, universal classification of processes varying over
many decades.

We define a scale invariant system as a system under-
going scale invariant interactions. Mathematically speak-
ing, it is thus governed by equations which keep the same
shape at any scale. This is the operational description of
“scale covariance”, as discussed in [6]. This scale symme-
try can be exact [1].

Now, consider a random process φ which is a physical
solution of these “scale covariant” equations1. φ can be
any scalar quantity, taking its value over several decades,
such as one can define its value φ` measured at scale ` [8].
A common example is isotropic turbulence, where φ` can
be the longitudinal increment of velocity over a distance
`. In what follows we assume that φ` can be experimen-
tally measured and receive a statistical description, i.e.
that it admits an underlying probability distribution func-
tion. It may be described either by its histograms or by
its moments. Experimentally, both descriptions are used
in order to track the probability distribution function.
They are different in essence, they have different sensi-
tivities to noise and to extreme deviations, but they carry
the same mathematical and physical information. For in-
stance, the local exponents ζ(n, `) = d log〈φn` 〉/d log ` de-
rived from moments characterize the scale properties of
the probability distribution. Also, for any realizable value

1 In the sequel, we consider only positive processes, to be able
to deal with its logarithm or non-integer powers. Extensions in
the complex plane permit generalizations to negative processes
[7].
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of the random process φ∗, there is a real s such that
〈f(φ) φs〉/〈φs〉 = f(φ∗) if the function f is non-zero and
regular enough [10]. This connection between values and
moments, often understated, will turn particularly useful
when we define the variable X below.

Imagine at first an ideal, mathematical solution φ`
which is itself “scale-invariant”; in the sense that it does
not break the symmetry of the equations. Classically, this
is evidenced upon rescaling of scale by a factor λ, and
of process by a factor µ = λh, where h is any number,
leading to a process having the same statistical proper-
ties than the original one. Then, although µφλ` and φ`
do not not necessarily have the same individual realiza-
tions, their distribution functions are the same up to all
moments. This usual definition (see e.g. [11]) introduces a
family of natural operators, the dilation operators:

Sλ,µ : `→ λ`; φ` → µφ`, (1)

which simply compose as: Sλ,µ ◦ Sλ′,µ′ = Sλλ′,µµ′ . Pro-
cesses φ` statistically invariant under such dilations have
nth moments which go as power laws `ζ(n) of the scale,
i.e. they check ∂ζ/∂` = 0. This corresponds to the multi-
fractal description [11,12] according to which the expo-
nents ζ(n) are related to the set of exponents h by the
Legendre transformation ζ(n) = minh (nh+D(h)) ,
where D(h) is related to the probability of occurence of
the exponent h. Then h = dζ(n)/dn.

However, this classical analysis suffers from a severe
drawback. As usual, symmetric equations with symmetry-
breaking boundary conditions admit symmetry-breaking
solutions. Scale independent objects, in the sense we have
defined, exist only in an idealized, infinite-size mathemat-
ical limit. Scale invariant equations are widespread but
any real system has a lower and an upper cut-off which
break the dilation symmetry. Moments are thus never
exact power laws: ζ always varies with `, at least near
cut-offs. According to common experience, even when a
log〈φ`〉 versus log ` diagram looks straight, a fit with a
straight line is not necessarily close to the idealistic prop-
erties of a scale-invariant system [9] with no cut-off. This
physical constraint cannot be treated as perturbations for
pure scale dilation operators and requires to find more
general operators. However, as the scale symmetry of the
equations themselves need not be broken by cut-offs, we
may still apply our basic postulate [2–4,6]: the scale is not
an absolute quantity and can depend, according to one’s
point of view, on the observer or on the realization of the
process.

This is reminiscent of Nottale’s approach [5]. Like him,
we want to formalize this freedom by exhibiting a group
structure for scale transformations [3]. This we do by
defining successively (i) a variable T going as the log of
the scale; (ii) a variable X going as the log of the process;
(iii) a coupling between them, stating that the scale is not
an absolute quantity but can depend on the process. This
will be physically discussed in Section 5.2.

2 Formalism

We first define a log-scale coordinate characterizing the
measurement of a scale with respect to any scale unit `0,
via:

T :=
ln(`/`0)

ln(K)
= logK(`/`0),

whereK is the basis of the logarithm and `0 is an arbitrary
unit. Scale symmetry then implies homogeneity in this log-
coordinate.

In a similar way, we introduce a log-coordinate char-
acterizing the measurement of a given realization of the
random process φ`, at this scale, with respect to any “field
unit” φ0 (possibly random and/or scale dependent [3]):
X := 〈 f(φ`/φ0) (φ`/φ0)s 〉/〈(φ`/φ0)s〉, where s is a real
number. We impose that f must be a linear function of the
logarithm, so that a dilation on φ appears as a translation
on X. We thus write:

X =
〈
logQ(φ`/φ0)

〉
Rs
,

where again the basis Q of the logarithm and the scale-
dependent unit φ0 are chosen by the observer. The nota-
tion 〈 〉Rs is used to recall that the average is taken with
respect to the weighted probability distribution φs/〈φs〉,
which plays the role of a “reference frame” (see e.g.
[4,13,14]). In these notations, Sλ,µ appears as a trans-
lation of vector (lnλ, lnµ) applied on the origin of coordi-
nates (T,X).

3 The scale transformation

We now want to relate two measurements T,X, performed
at a given scale, in a given realization, to similar measure-
ments performed at a different scale, in another realization
T ′,X ′, that is varying ` to `′ and s to s′. We stress here
that there are three equivalent points of view: the same
numbers X ′ and T ′ can be obtained by independent vari-
ations of either ` and s, as adopted here; or `0 and φ0, as
adopted in [2–4]; or even by varyingK and Q, as discussed
in [4].

Formally, as shown in preceding papers [3,4], symme-
try requires that both sets of log-coordinates (T,X) and
(T ′,X ′) are coupled through a linear transformation of de-
terminant one. For the exponents to be “relative”, physical
relations must be invariant under a change of logarithm
basis. Physical laws can therefore link the values of differ-
ent exponents but never single out a particular value. This
imposes to consider a group structure for the transforma-
tions whose shape [3] is selected in analogy with special
relativity [4,5]:(

T ′

X ′

)
= ¯̄aij

(
T
X

)
=Γ (V )

(
1−V (1/C++1/C−) V/C+C−

−V 1

)(
T
X

)
,

Γ (V )−2 :=1− V (1/C+ + 1/C−) + V 2/C+C−. (2)
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• There appears a parameter V = VRs/R′s , characterizing
the relative scaling exponent, i.e. the scaling of the first
coordinate system with respect to the second. Applying
(2) successively from φ` to φ′`′ , then from φ′`′ to φ′′`′′ , one
obtains a group law for V :

V ⊗ V ′ :=
V + V ′ − V V ′(1/C+ + 1/C−)

1− V V ′/C+C−
· (3)

The law ⊗ is commutative and exhibits two fixed points
C±. We stress that it is the only possible group law iso-
morph to the addition of real numbers in the interval
bounded by C± (see [3]).

• The two fixed points C± depend only on the random
process itself; for instance, 1/C+ + 1/C− 6= 0 iff the sym-
metry between small and large scales is broken. They play
an essential role since they classify the possible statistics
[3].

• The novel scale symmetry operators appear naturally as
the analog of Lorentz boosts:

Sλ,µ,V : `→ (λ`)a11(V )(µφ`)
a12(V ),

φ` → (λ`)a21(V )(µφ`)
a22(V ). (4)

This family includes, but does not reduce to, the former
operator Sλ,µ = Sλ,µ,V=0 acting as dilation on scales (or
translation on log-scales). These novel operators have no
special reasons to select processes with scale invariant mo-
ments (dζ(n)/d` = 0 ∀n, `): see [4] for a discussion of the
variation of ζ with the scale `.

4 Possible statistics

In what follows we rather want to determine how these
novel operators select possible statistics considered at a
given scale `. This means that we want to relate the val-
ues of the moments 〈φn` 〉, or equivalently of the ζ(n), for
different values of n. We thus fix `, and when derivation is
needed (for instance to define ζ knowing φ`) we consider
only an infinitesimal neighbourhood of it. In this paper
we take ζ and V as functions of the sole variable n, as in
[2,3,15].

4.1 Correspondence between histogram and moments

We then must precise the link between X and V . This
depends of course on the specific choice of φ0.

For instance, if φ0 is chosen to be a number, equal to
the log-average of φ` (i.e. lnφ0 = 〈lnφ`〉), then:

V := VRn/R0
= ∂nζ − ∂nζ|n=0. (5)

In that case V (0) = 0 and V = h−h0, so that the link with
the multifractal description is easy. This way of rendering
φ` dimensionless is a judicious choice [4] and we examine
it in the next subsection.

More generally, the correspondence between histogram
and moments appears here as a bijection n → V (n)
defined on the interval [n−, n+] = V −1[C−, C+]. It un-
ambiguously defines an internal composition law ⊗̃ on
[n−, n+], through a transport of the group structure ⊗:

V (n⊗̃p) := V (n)⊗V (p),

n⊗̃p := V −1(V (n)⊗V (p)). (6)

Physically, this means that the probability distribution
admits convergent moments of order n for all values of n
in that interval, and divergent moments for other values
of n.

The correspondence established through equation (6)
is the main result of this paper, as will now become clearer:
in fact, it enables to classify the statistics of scale invariant
random process, i.e. of the possible shapes for ζ(n), on
universal grounds.

Classification proceeds as follows. Consider equa-
tion (6) with n = p = 1. This provides a recursive equation
which allows the computation of V for any integer m, and
then, by continuation, on any real number, namely:

E(m) = 1⊗̃1⊗̃...⊗̃1 = 1
˜[m],

V (E(m)) = V (1)⊗V (1)⊗...⊗V (1) = V (1)[m]. (7)

Here the notation [m] (resp. ˜[m]), stands for the mth iter-
ate via ⊗ (resp. ⊗̃): we have introduced the notation E to
generalize the exponentiation to m real and not integer,
defined using infinitesimal n and p.

Inverting (5), we get:

dζ(n)

dn
= h0 + V (1)[E−1(n)]. (8)

This provides a symbolic representation of the possible
shape for the scaling exponents, as a function of the com-
position laws, i.e. in particular of the four fixed points
n±, C±. The dependence on `, here understated, can be
integrated within these parameters according to the ob-
server’s choice, as discussed in Section 5.2.

4.2 A good method to adimension the field

Let us focus on the case where φ0 is chosen to be the log-
average of φ`. A possible shape for ⊗̃ might be given by
(3) with the parameters n± instead of C±:

n⊗̃n′ =
n+ n′ − nn′(1/n+ + 1/n−)

1− nn′/n+n−
· (9)

More generally, as the composition law on the interval
[n−, n+] isomorph to the addition of real numbers is
unique [3], we know that the shape of ⊗̃ can be reduced to
(9) by some non-linear application involving n± as fixed
points. We note that this application is determined by the
isomorphism n→ V (n).

Let us focus here on the case where (9) is satisfied.
It is then technically possible to compute the values of
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the ζ(n), parametrized e.g. by the value of ζ(1): the set
of equations (3, 6, 7, 9) is a mathematically well posed
problem. The possible shapes of the functions E(n) and
V (n) as a function of C± or n± are given in [3]. We list
below but a few examples:

– log-Poisson: this case [13,16,17] was already obtained
in [2,3]. It corresponds to C− finite, C+ = ∞, n− =
−∞, n+ = +∞. It reads:

ζ(n) = n (h0 + C−) +
C−

lnβ
(1− βn);

the parameters are here h0, C− and β = 1−V (1)/C−,
or equivalently ζ(1);

– self-similar: this limiting case of the previous one is
obtained for C− = 0, and reads:

ζ(n) = n h0;

– log-normal: this is again a limiting case of the log-
Poisson, with C− →∞; it corresponds to:

ζ(n) = n h0 + n2 (ζ(1)− h0) ;

– a log-Levy like distribution: this case, also sometimes
called “truncated log-Levy” [18], was obtained in [2].
It corresponds to C− finite, C+ infinite, n+ finite and
n− infinite (or vice versa). It is defined only for n < n+

and yields:

ζ(n) = n (h0 + C−)− C−
n+

α

[
1−

(
1−

n

n+

)α]
.

Here, α along with C−, n+, h0, make four parameters,
one of which could be replaced by ζ(1).

We have chosen these simple examples because they
are precisely those obtained in [2] using a gauge invariance
method. This shows that the matrix approach presented
in [3] can be made consistent with the gauge approach,
provided the constraint of additive structure in n is re-
laxed.

4.3 Coupling between field and scales

The above examples correspond to a case where T ′ is de-
coupled from X, i.e. where there is no effect of field on
scale, as requested in [2]. This point is further discussed
in Section 5.2. Formally, this is equivalent to the condition
that the off-diagonal matrix element a12 = −V Γ/C+C−
of (2) vanishes whatever V , i.e. C+C− → ±∞.

If this constraint is removed, additional solutions may
be obtained [3,15]. For instance, consider the T → −T
(large→ small scale) symmetry preserving case where C−
and −C+ are equal and finite: with n− = −∞, n+ = +∞,
one obtains

ζ(n) = nh0 +
C−

γ
ln(ch(nδ)),

where δ = ln
√

1 + 2/β 6= 0, h0 and C− are three param-
eters.

We thus clarified the connection and differences be-
tween the methods used in [2,3]. This was one of the main
goals of the present paper. We can now proceed further
and explore potential implications and applications of the
unified method proposed here.

5 Applications and implications

5.1 Link with the log-infinitely divisible laws

All above examples belong to the family of the so-called
“log-infinitely divisible laws”. One question which is nat-
ural to ask now is whether the representation (8) in fact
just characterizes the complete set of log-infinitely divisi-
ble laws. We have no rigorous answer to that, but a hint
that it might indeed be the case. The Poisson law is the
brick from which one can build all infinitely divisible laws
[19]. Let us then consider what happens when C+, say,
is infinite. From the results obtained in [3], we may then
write (8) as:

ζ(n) = n h0 + C−

∫ n

0

(
1− βE

−1(p)
)
dp, (10)

where as in the preceding section we note β = 1 −
V (1)/C−. Changing variable from p to q = E−1(p) lnβ/n,
we get:

ζ(n) = n h0 +

∫ E−1(n) lnβ/n

0

(1− enq) dF (q), (11)

where dF (q) ≡ C−dE(nq/ lnβ). Upon taking the limit
β → ∞ (i.e. C− → 0), one gets a representation of ζ(n)
mimicking the Levy-Khinchine general representation of
infinitely divisible laws [19].

We thus conjecture that the representation (8) is in
essence equivalent to the Levy-Kinchine representation,
i.e. that we obtain by our method all log-infinitely di-
visible laws. Is this really a coincidence? Of course, not.
The starting point of the obtention of the composition
law (3) is, according to [3], the scale symmetry invari-
ance, which translates into an assumption of homogeneity
in variables X,T . The starting point of the classification
of log-infinitely divisible laws is precisely that the variable
X has stationary increments, i.e. is homogeneous. That
the statistics of any scale invariant process is an infinitely
divisible law is already known [20] and might date back to
Kolmogorov [21]. The novelty resides in fact in two points.

First, it is shown here that the only physical ingredient
leading to the law is the homogeneity in variable log, i.e.
the scale symmetry of interactions between fluctuations
of different amplitudes. This demonstration does not re-
quire to invoke any notion such as continuous cascades,
or multiplicative process. Such remark has an important
consequence: it means that this symmetry can rule physi-
cal systems in which coupling between scales (e.g. energy
transfer) is not local in the scale space.
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Second, we obtain an universal classification of the log-
infinitely divisible statistics. In fact, there are two com-
position rules (Eqs. (3, 6)) and thus four relevant fixed
points. Two of them are minimum and maximum scaling
exponents, linked to the codimension of the rarest events
[3]: they are thus topological quantities. The two remain-
ing fixed points are the minimum and maximum orders
of the convergent moment: they are linked to the mo-
ment generating function. We classify the various possi-
ble statistics according to the number of the fixed points:
whether they are finite or infinite, and whether they are
distinct or equal [2,3]. The residual degree of freedom re-
sides in the choice of the isomorphism V (n).

5.2 Selection of the parameters of the classification

The previous classification depends on four parameters
n± and C±, and one isomorphism V (n). It is of practical
interest to determine how these parameters depend on the
system, and which parameters will be selected from a given
experimental or numerical signal.
• The first influence emphasized by our derivation

comes from the experimentator who records the signal,
the “observer” [2,3]. What our covariance derivation re-
ally stresses is that a same signal can lead to different
statistics, depending on the way adopted to record it. That
leads back to a trivial remark: if two persons are observ-
ing the same physical signal, and if the first one chooses
to record the data corresponding to a physical quantity φ,
then the second one is free to record and analyze the sig-
nal φ2,

√
φ or eφ. Of course, they will not obtain the same

statistics2 (if φ is Gaussian, certainly eφ is not Gaussian).
But both statistics are related via a simple isomorphism,
respectively n → 2n, n → n/2 and n → n2. This trivial
example, which we will use again below, is an illustration
that a scale invariant statistics can only be classified up
to an isomorphism (we called it V ), which depends either
on the choice of the field itself, or on the “units” φ0 and
`0 chosen to measure it.
• Consider now the parameters C±. For a given choice

of the “units” φ0 and `0, they characterize the coupling
between the field φ/φ0 and the scale `/`0. Indeed, we note
that when C+C− (i.e., say, C+) is infinite, the field is
coupled to the scale, but the scale itself is not coupled to
the field (X ′ depends on T , but T ′ is independent of X).
So, the knowledge a priori of the coupling between field
and scale can help to constrain the possible statistics in a
given system. In most physical experiments, one consid-
ers that the field depends on the scale, but that the scale
usually does not depend on the field. For simple scale in-
dependent units, this a priori selects only four possible

2 Note also that the choice of system of units and sub-units
imbeds exactly the same degree of arbitrariness: measuring the
same φ, using a different variation of the unit φ0(`) with the
scale, also leads to different statistics for φ/φ0. This effect has
luckily disappeared due to the widespread use of interchange-
able international systems of sub-units growing in geometrical
progression of ratio Q = 10 [4].

statistics: the self-similar, the log-Poisson, the log-normal
or the truncated log-Levy.

One should however be cautious in drawing such con-
clusion because the feedback of a field to the scale of
measurement can be lurking at the stage of the physical
measurement, or later when analyzing data. For instance,
consider an experiment of hydro-dynamical turbulence. A
hot-wire measurement of velocity fluctuations at a certain
scale itself depends on how the velocity fluctuates at other
scales. The signal measured at one scale will be more or
less sensitive to the global structure of the velocity field ac-
cording to the number, disposition and vibrations of each
hot-wire probe. Two observers can thus acquire different
statistical signal from the same turbulent bath depending
on how their probe reacts to the field.

Also, they can introduce the feedback, not during mea-
surement, but later, during the analysis. For instance, a
temporal signal can be translated into a measurement of
fluctuations at different space scales if one assumes, follow-
ing Taylor, that the fluctuations at small scales are frozen
and carried away by large scale currents; this amounts to
writing at each scale φ` as 〈φ`〉 + δφ` where fluctuations
δφ` are assumed to be much smaller than the average 〈φ`〉.
It would therefore not be surprising to observe a different
type of statistics in e.g. jet turbulence (typically 10-20
percent of rms turbulence) where Taylor approximation
barely affects the signal analysis, and in another turbu-
lence where Taylor approximation is strongly violated and
thus introduces an unavoidable feedback of field on scale.
Such effect might already have been observed by Pinton
and Labbé [22].
• We finally turn to the last parameters n±, i.e. the

range of non-divergent moment orders3. In thermodynam-
ical analogies of multifractals, they correspond to critical
temperature(s), which need not be unique. This analogy
suggests that these parameters could be characteristic of
the system. Especially, there is strong evidence that they
depend on physical cut-offs and that the only possible
statistics in an infinite size system is the self-similar statis-
tics [23]. Dubrulle and Andreotti [24] have studied the
generic scale symmetry breaking of a self-similar statis-
tics; they find a class of solutions including the truncated
log-Levy-laws, thus proving that finite size effects influ-
ence the values of n±. Other external parameters in the
system are also probably influent: Arneodo et al. [25] see
a tendency for statistics in turbulence to approach the
log-normal statistics as the Reynolds number is increased.
These kinds of analysis certainly deserve more attention.

6 Conclusion

To summarize, we generalized our preceding studies of
fields which take random values over several decades.

3 Note that in this paper we do not consider accidental diver-
gences of moments due to the prefactor of the scale dependence.
That these prefactors do or do not diverge of course depends
on the choices made during the recording and the analysis of
the signal.
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Starting from the postulate that scale is not an absolute
quantity, we reach a classification of log-infinitely divisible
laws with symmetry arguments as general as possible. This
classification at least covers previously published statistics
and is probably universal. We discussed the physical sig-
nificance of the parameters entering the classification, and
their dependence on the characteristics of the system. The
open problem is now to compute the values of the param-
eters in a given system.

We thank Marc Lachièze-Rey and Uriel Frisch for many in-
teresting discussions about the signification of our composi-
tion laws, and Massimo Vergassola, Alain Arnéodo and Jean-
François Muzy for useful comments.
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