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We show that differential adhesion with fluctuations is sufficient to explain a wide variety of cell re-
arrangement, by using the extended large-Q Potts model with differential adhesivity to simulate different
biological phenomena. Different values of relative surface energies correspond to different biological
cases, including complete and partial cell sorting, checkerboard, position reversal, and dispersal. We ex-
amine the convergence and temperature dependence of the simulation and distinguish spontaneous, neu-
tral, and activated processes by performing simulations at different temperatures. We discuss the biolog-
ical and physical implications of our quantitative results.
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I. INTRODUCTION

Biological cell shapes and positions rearrange both
during morphogenesis and after perturbation of their nat-
ural configuration, as in wound healing [1-3]. In vitro,
spontaneous sorting of two intermingled cell types occurs
in aggregates of dissociated cells and yields homogeneous
and coherent tissues [4,5]: such sorting is a key step to-
wards reconstruction of functional organs (for a review,
see Armstrong [6]). Living organisms [7], even adult an-
imals such as Hydra, can regenerate from an aggregate of
randomly mixed cells of different types [8,9].

Steinberg suggested that the interaction between two
cells involved an adhesion surface energy which varied
according to the cell types [10-13]. He interpreted cell
sorting via the differential adhesion hypothesis (DAH),
which states that cells can erogidically explore various
configurations and arrive at the lowest-energy
configuration. During the past decades, the DAH has
resisted experimental tests better than competing models
[6,14]. Recently, Technau and Holstein have obtained
experimental evidence that differential adhesion is the
main source of cell sorting in hydra cell aggregates [15].
Meanwhile, type-selective surface adhesivity has turned
out to be a nearly omnipresent property of cells; in mor-
phogenesis, it is involved in cell recognition [16], gastru-
lation [17], cell shaping [18], and control of pattern for-
mation [19]; in pathology, it may participate in the mi-
gration and invasiveness of cancer metastases [20], and
conversely in immunological defenses as well as wound
healing [21].

Much literature deals with simulations of cell sorting
under the DAH [13]. However, the mechanisms by
which differential adhesion can guide cell rearrangement
are still unclear. One possibility ( 4) is that cells have an
autonomous motility; that is, they move in the appropri-
ate direction using their cytoskeletal apparatus. Motility
allows long-range active motion, not to be confused with
a second possibility (F), namely a simple random fluctua-
tion of the cell surface which allows each cell to locally
explore its neighborhood [3,6,22,23]. In practice, it may
not be easy to distinguish these two cases experimentally.
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A third possibility (.S) is that even an aggregate made of
passive cells could decrease its total adhesion energy and
spontaneously relax towards a configuration with the glo-
bal minimum of energy [24]. Supporting the last two pos-
sibilities is the experimental observation that even in the
presence of cytochalasin B, which prevents pseudopod
driven cell motion and membrane ruffling, cell sorting
can occur in chick cell aggregates (see Ref. [17] for a dis-
cussion) [17,25]. However, this sorting is partial, show-
ing that biological partial cell sorting can occur without
fluctuations, but suggesting that some sort of fluctuations
are necessary to reach full sorting.

What are the physical implications of this debate? At
issue is the texture of the energy surface explored by the
cells. The current “active cells” hypothesis ( 4) states
that the energy landscape is irrelevant. Even if there are
deep local minima in the energy landscape, cells find the
global minimum or at least the “ideal” configuration.
This is equivalent to assuming that the cell’s exploration
of its energy surface is totally erogodic, but also totally
dissipative, which apparently requires active cell motion.
The fluctuation hypothesis (F) acknowledges the pres-
ence of only weak local minima, and says that the fluctua-
tion amplitude is large enough to assure diffusion to the
global minimum for nonpathological initial conditions.
Finally, the diffusionless hypothesis (S) states that there
are at worst saddle points, with no local minima, and not
more than one global minimum of the energy (which
might be degenerate, if several configurations are energet-
ically equivalent).

In this paper we survey the energy surface to investi-
gate whether the energy landscape itself provides a
coherent description or whether it is necessary to invoke
other explanatory mechanisms to account for experimen-
tal observations of cell rearrangement. We largely
confine our discussion to the behavior of initially ran-
domly mixed aggregates. The formation of such aggre-
gates destroys any preexisting positional signals such as
chemical gradients. Thus we examine here the effects of
differential adhesion only, separately from chemotaxis,
reaction diffusion, active cell motion and cell
differentiation. The failure of our simulations to repro-
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duce biologically observed effects would give strong evi-
dence that cell rearrangement requires at least the
cooperation of a mechanism besides differential adhesion.

The visual similarity between the pattern of bubbles in
a soap froth and that of cells in an epithelial tissue was
noticed very early [26]. More recently, the analogy be-
tween surface tension driven boundary length minimiza-
tion in a soap froth and biological cells has provided
quantitative models for observed cell arrangements [27].
These models are static, explaining the statistics of stable
patterns rather than the dynamics of pattern formation.
However, the analogy between froth and tissue is a fruit-
ful one, and (since we now understand the basic dynamics
of soap froth fairly well) [28] suggests that we could also
understand the dynamics of biological tissues, provided
that we recognize the intrinsic short-wavelength cutoff
implied by each cell’s finite size: indeed, each cell has a
volume-dependent  (or  area-dependent, in two-
dimensional models) energy term or constitutive relation.
Thus we can write a generalized continuous Hamiltonian:

7{General = fcell surfacej( Tinside(s)’Toutside(s) )ds
+3 fila), (1)

cells,

where j(Tingae(S), Toutsiae($)) is the energy of a unit of cell
membrane as a function of the membrane type, 7;,g4.(5),
and surface (or medium) with which it is in contact,
Toutside!S ), ds is a unit of cell membrane at location s, and
f; describes the constitutive relation of the cells as a
function of their volume a;. We assume that f; encodes
all information concerning bulk cell effects, e.g., mem-
brane elasticity, cytoskeletal properties, etc. In this form,
our energy resembles that of magnetic bubbles even more
closely than that of soap froth [29]. Thus we explicitly
assume that the cell bulk is isotropic, though we have al-
lowed for membrane surface-energy fluctuations within a
cell by making the membrane type position dependent.
There are many possible ways to implement such an
area-constrained surface-tension Hamiltonian. Since the
true system is dissipative rather than conservative, the re-
sults of the model depend sensitively on the choice of the
dynamics. Possible choices include vertex dynamic,
center dynamic, and boundary dynamic models. In this
article, we use the extended two-dimensional Potts model
which we have presented earlier [30] to simulate various
observed cases of cell rearrangement and show how
differential adhesion can cause rearrangement without

7{Potts:: 2

(i, j)(i’, j" )Ineighbors

where (o) is the cell type associated with the cell o and
J(7,7") is the surface energy between spins of type 7 and
7', A is a Lagrange multiplier specifying the strength of
the area constraint, a (o) is the area of a cell o, 4 is the
target area for cells of type 7, and ©(x)={0,x <0; 1,
x 20}. This Hamiltonian is nearly identical to the
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cell motility. While we are currently extending our simu-
lations to three dimensions, the two-dimensional simula-
tion is sufficient to reproduce the typical types of cell-
sorting behavior, including mixing (also known as the
checkerboard), complete and partial cell sorting, position
reversal and dispersal. We also discuss the convergence
of the model, and look in more detail at the quantitative
effects of temperature on the simulation to attempt to dis-
tinguish thermally activated from spontaneous processes.

II. THE MODEL
A. An extended Potts model

1. The Hamiltonian

We use a simple extension of the standard large-Q
Potts model [31] to include area constraints and type-
dependent boundary energies. We have described the
differences in detail elsewhere [30]. Beginning with Eq.
(1), we make the additional simplifying assumptions that
the surface of each cell is isotropic, i.e., the energy of a
unit of cell membrane depends only on the types of the
cells on either side [7(s)=const], and that the constitu-
tive relation is a simple quadratic elastic term, with all
cells of a given type having the same natural volume or
area.

The extended Potts model discretizes the continuous
cellular pattern onto a lattice, with a spin o(i,j) defined
at each lattice site (i,j). In the large-Q limit, we assign a
separate spin, c € {1,..., N}, to each of the N cells in
the pattern, with all lattice sites with a given o compos-
ing a cell 0. Thus each cell extends over many lattice
sites and need not be simply connected. Typically, each
cell in our simulations covers approximately 40 lattice
sites, whose spins share the same o, and we treat approxi-
mately N =1000 cells, so o can assume about 1000
different values.

Each cell also has an associated cell type (o), for ex-
ample, endodermal or ectodermal epithelium. Bonds be-
tween like spins have energy O, that is, the energy inside a
cell is zero. Between unlike spins (i.e., at cell boundaries)
there is a cell-type-dependent surface energy J. In addi-
tion to their surface energy, biological cells have general-
ly a fixed range of sizes, which we include in the form of
an elastic term with elastic constant A, and a fixed target
area, which may depend on cell type. Therefore, our
Hamiltonian is

J(T(O-(i,j))y‘r(a(i,’j/)))(l_sg(i,j)’a(i"j’))-‘l_k 2 (a(o)—Am,))ZG(AT(U)), (2)

spins o

f

lowest-order expansion for the magnetic bubble Hamil-
tonian [29].

2. Procedure

All our simulations employ a second-nearest-neighbor
square lattice. The simulated cells are of two types, low
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surface energy or dark cells, which we will refer to as d
cells (r=d), and high surface energy or light cells, which
we will refer to as / cells (7=1/). In addition, to simulate a
fluid medium of unconstrained volume we define an addi-
tional cell type (r=M), and its associated properties, set-
ting its target area A,, negative, to suppress the area con-
straint. Thus 7(o ) can assume three values /, d, and M.

At each time step in the simulation we select a lattice
site (i,j) at random. We convert its spin value o(i,j) to
the spin value o’ of one of the eight neighboring sites,
chosen at random, with the following success probability:
for temperatures T >0,

P(o(i,j)—0o'(i,]))
={exp(—AFH/kT), AH>0; 1, AH#=<0}, (3)
and for T =0;
P(o(i,j)—0o'(i,))
={0, A#>0; 0.5,A#=0; 1, A#H# <0}, (@)

where A is the gain in pattern energy produced by the
change. Suppressing the nucleation of heterogeneous
spins is biologically realistic, but we can relax it to allow
the nucleation of medium filled vacancies with essentially
no change in the results described below. We define one
Monte Carlo step (MCS) to be 16 times as many time
steps as there are lattice sites. Since we change only one
spin at a time and allow it to take only the value of one of
its neighbors, the cells move gradually (if granularly)
rather than jumping from place to place. We discuss cer-
tain pathological nonlocal jumps in Sec. II C 1.

3. Surface tensions

It is also useful to define the three surface tensions in
the pattern in terms of the bond energies [24]:

_ Jaa tJu
Yia=Ja— —s
_ Jiy
ylM—JIM——T ’ (5)
Ja

=J
Ydam = Jam 2

These surface tensions y are not equivalent to a biolog-
ical membrane’s internal tension. The latter appears in-
stead as part of the area constraint A in Eq. (2). They
represent the difference in energy between heterotypic
and homotypic interface per unit area of membrane (or
per lattice bond). These relative costs do not change if a
given constant is added to both J;; /2 and J;;. We cannot
recover our initial surface energies from the surface ten-
sions alone. However, the temperature acts on surface
energies, not surface tensions. If we have two sets of sur-
face energies giving the same surface tensions, we expect
the final global configuration of the pattern to be approxi-
mately the same, but the shape and evolution of each cell
can be radically different, crumpled for a low ratio of sur-
face energy to temperature or pinned for a high ratio. If
we multiply all the energies by the same positive constant
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C, the y are also multiplied by C and the evolution
remains unchanged only if we multiply the temperature
by C. If we add the same real constant ¢ to all energies,
the surface tensions remain unchanged, but the observed
evolution changes unless we also add c¢ to the energy be-
tween two like spins in the same cell, which we usually
take as zero for simplicity.

B. Characteristics of the Potts model

1. Advantages

The Potts model has several advantages over other
simulation methods. We can easily calculate any desired
statistical properties of the pattern and the model runs
fairly fast, so we can simulate fairly large aggregates (up
to 1000 cells of target area 40 lattice sites) over many
MCS’s using moderate amounts of computer time.

However, the great advantage of the Potts model is its
simplicity. The model is ‘“‘realistic” in that the position
and diffusion of the membrane determine the dynamics,
as they do for real loosely aggregated cells. For vertex
and center models we must supply the dynamics
artificially as a function of fictitious vertices or centers.
In the Potts model, relative contact energies and bound-
ary curvatures drive all motion. Thus vertices are always
close to their equilibrium condition, and all topological
rearrangements happen automatically and rapidly.

We can translate into the language of a vertex model as
follows: Since we have defined the self-energy to be zero,
the marginal cost of contact area is positive, since all en-
ergies must be larger than the self-energy or the model is
unstable. The equilibrium contact angles at a vertex are
then stable (as in the Young condition), so the cell boun-
daries “pull” the vertex. If we had defined the energy
cost to create new contact area as negative by using nega-
tive surface energies, the cell boundaries would “push”
the vertex. Whatever mechanism determines the surface
energy, it has a lower energy when cell boundaries are
paired (e.g., when surface adhesion molecules determine
the surface energy, each adhesion molecule has a lower
energy when it binds to a corresponding molecule on the
surface of another cell, so it attempts to establish new
contacts), thus driving the membrane forward, until the
local constitutive relations of the cell material and global
volume and mass conservation within the whole cell sta-
bilize it.

2. Contact angles and topology

In a real moving pattern, the equilibrium contact angle
occurs only for slow movement in which the vertices are
adiabatically equilibrated. However, whenever a topolog-
ical rearrangement of the pattern occurs (when two cells
come into contact pushing apart two other cells in a 71
process) the contact angles are wildly out of equilibrium
and the boundaries move rapidly until equilibrium is rees-
tablished (Fig. 1). The same holds true for pattern rear-
rangement after cell disappearance, known as a 72 pro-
cess. However, since disappearance normally occurs only
in physical patterns which do not conserve cell number
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FIG. 1. Topological changes. A T1 process between four
equivalent cells. (a) Before the swap all angles are 120°, as indi-
cated by the circles. (b) During the swap there is a single four
fold vertex with the angles of 120° and 60°. Note the macro-
scopic change in equilibrium angle for an infinitesimal move-
ment. (c) After the swap the angles are still far from 120° and
the vertices move rapidly. (d) The position of the reequilibrated
120° vertices.

>

and area, and does not occur in biological patterns, we
will neglect it. We define the equilibrium contact angle
so that any infinitesimal displacement of the vertex causes
a second-order variation of the surface energy, while dur-
ing a topological rearrangement the energy must vary
macroscopically over a small but finite coherence length,
typically the rigidity correlation length for biological
cells.

In a center model like those based on the Voronoi con-
struction, the coherence length of a cell is comparable to
its diameter. Contact angles are given correctly at equi-
librium but approach and remain near 90° during a T'1
process, since the centers are essentially uninfluenced by
topological details like the difference between a fourfold
vertex and two neighboring threefold vertices [32,33].

In a vertex model, it is the membrane which adiabati-
cally follows an out-of-equilibrium, slowly relaxing ver-
tex. In such a model the membranes are plane or spheri-
cal and vertices have arbitrary angles. In essence, the de-
viation of the vertex angles from their equilibrium value
(for identical cells, 120° in two dimensions and
tetrahedral angles in three dimensions) represents the in-
tegrated curvature of the cell walls. A pure vertex model
with straight walls (e.g., the single-cell-type model of
Weliky and Oster) [34] does handle T'1 processes correct-
ly. However, for biological tissues, such a model is realis-
tic only for tightly packed cells.

With the extended Potts model we have both features:
walls are free to crumple and diffuse, which is not true in

vertex models [34], and contact angles during the T'1 pro-
cess are correct, which is not true in center models. 72
processes occur properly, though they do not normally
occur in our simulations since cell area and number are
conserved (cell number need not be conserved at very
high temperatures or for very weak area constraints).
The discretization automatically provides a membrane
coherence length of order of a single lattice constant.
This coherence length is realistic, but we must consider
its implications carefully.

3. Limitations

Lattice discretization causes fluctuations in local con-
tact angle, as does lattice anisotropy. The latter also
causes boundary pinning. Working at finite temperature
T reduces the pinning but introduces thermal fluctuations
in contact angles and boundary shapes [35]. In our simu-
lations we chose T high enough to avoid pinning of the
light-medium interface; however, pinning can occur when
dark cells are in contact with the medium (e.g., Fig. 22),
since the dark-medium energy is high compared with the
temperature.

One physically inspired limitation of the model is that
all lattice sites belonging to a given cell are formally iden-
tical. The boundaries between cells define the membrane,
which has no independent existence, and there is no in-
dependent cytoskeleton. We lump all properties of the
cell except its surface energy, e.g., its membrane elastici-
ty, its cytoskeletal apparatus, etc., into a single term de-
pending only on cell area. We lump because it allows us
to use the Hamiltonian of Eq. (1) and of magnetic bub-
bles, essentially unchanged, and because we wish to avoid
unnatural and ad hoc extensions to our model since we do
not have sufficient information to describe cell properties
in detail.

Thus the model does not distinguish between simply
connected and multiply connected cells provided that
they have identical areas and perimeters. At zero tem-
perature, for simply connected initial conditions, multi-
ply connected cells never occur. However, when we
simulate at nonzero temperatures, surface fluctuations
can create multiply connected cells. At low tempera-
tures, the detached cell fragments are small and short
lived, and are mainly inconvenient because they disturb
our statistical characterization of the pattern. We reduce
this problem by annealing at T =0. We could forbid the
nucleation of isolated heterotypic spins, but such rules
seem artificial and needlessly complicated, especially
since biological cells moving via the extension of lamelli-
podia often do leave behind small tissue fragments. In
addition, we would not (and would not wish to)
artificially suppress the necking off of cell segments,
which occurs naturally during mitosis. Thus one price of
physical simplicity in the model is the presence of multi-
ply connected cells.

Our assumptions also enforce cell isotropy. We cannot
create a polarized cell, where membrane elasticity or sur-
face chemistry varies over the cell surface, nor can the
cell change shape cytoskeletally. On the other hand, we
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understand the physics of this simple model much better
than a more complicated and biologically realistic case.
Thus we can rigorously distinguish between activated,
neutral and spontaneous processes, for example, which
would be difficult or impossible for a more realistic mod-
el. Since our goal is to determine whether the energy sur-
face created by differential adhesion is sufficient to ex-
plain a variety of cell rearrangement phenomena, it seems
better to start with a model we understand. We discuss
possible extensions to improve the model’s realism in Sec.
Iv.

C. Temperature

1. Statics: Critical temperatures

There are two main critical temperatures in our model.
The first critical temperature T, is that at which indivi-
dual cells dissociate. When a spin which is surrounded
by only mismatched spins has a long expected lifetime, it
can freely detach from the bulk of the cell and the cell
falls apart. If we define 8E =J,; —(J 4, +J;;)/2, this dis-
sociation occurs for T, of order n8E, where the number
of neighbors is n =8 in the next-nearest-neighbor lattice.
As we approach this temperature, the constraint that
wall lengths are minimized weakens and cell walls can
stretch and crumple. In our cell-sorting simulations with
J 4 =2 for dark cells, dark-dark interfaces have T, =16
and therefore crumple somewhat, since our usual simula-
tion temperature of 77=10 is not very low compared to
T,;- On the other hand, the boundaries between light
cells have T;;,=96; thus they are in their low-temperature
limits and their shapes are close to minimal surfaces.

Another effect near T,; is that the clusters of spins
separated from the cell bulk have a longer lifetime than
isolated spins and hence can diffuse longer distances.
They also have a higher probability to grow to be nearly
equal in area to the parent cell, at which point there is no
way to distinguish them from the parent. This stable
division reveals a nonlocality of the model which is nor-
mally hidden, since a spin can then “jump” from one
cluster to the other. At low temperatures such large clus-
ters never form spontaneously, and we choose our initial
conditions to prevent their occurrence. Near T,; they
can, creating cells consisting of two widely separated
nearly equal area masses, which, unlike isolated spins or
small clusters, cannot be easily reconnected.

The second critical temperature, T,,, is that for spino-
dal decomposition, i.e., demixion of dark and light cells.
The spinodal decomposition limit occurs when the entro-
py and energy are of the same order, i.e.,
NgpinsOE =Neys Teo, giving T, =408E =120 for the pa-
rameters we use for cell sorting. Our usual temperature
T =10 is much lower than T,,: thus our simulations are
in the low-temperature regime and the lower-energy state
corresponds to fully demixed cells.

Here T=<T,;,<<T;<T,.,. What happens at higher
temperatures? When T increases above T,, the dark
cells crumple more until isolated spins detach. These iso-
lated spins easily establish heterotypic contacts. At even
higher temperatures, near T}; the light cells also crumple

JAMES A. GLAZIER AND FRANCOIS GRANER 47

then dissociate, and all the spins mix.

In practice, however, these phase transitions occur
chiefly for patterns with no free boundaries or for those
with very strong area constraints. For the typical param-
eter ranges which we discuss, increasing the temperature
results in the nonconservation of cells, and the pattern
loses energy simply by eliminating cells, first light cells
and then dark cells. Since the biological limit corre-
sponds to very low temperatures [24], we have not made
a detailed investigation of these phase transitions in this

paper.

2. Dynamics: Exploring the energy surface

As stated in the Introduction, we want to explore the
energy surface and determine whether it contains deep lo-
cal minima, only weak local minima, or no local minima.
Cell motion in these cases requires, respectively, activat-
ed, neutral, or spontaneous processes. ‘“Active” biologi-
cal cells can by definition migrate to the ‘“ideal” final
configuration regardless of the energy surface texture.
They experience all three types of process with the same
rate. On the other hand, passive cells quickly undergo
spontaneous transitions, slowly undergo neutral or
quasineutral transitions at a rate depending on their fluc-
tuation amplitudes, and cannot escape from deep mini-
ma.

We must distinguish the true temperature from the
effective fluctuation temperature in biological tissues.
Typically, in biological tissues the cytoskeletally driven
membrane fluctuations are much larger in amplitude
than the true thermal fluctuations, so, for example, when
cytochalasin B inhibits cytoskeletal fluctuations, the cell
membranes appear essentially fluctuationless [17]. Usual-
ly when we refer to temperature in the simulation we are
comparing it to the effective fluctuation temperature in
tissues.

Varying the simulation temperature allows us to distin-
guish among these cases. We use it to explore the energy
surface, not to simulate its effect on biological systems,
since observations always correspond to a low-
temperature regime. The rate of spontaneous processes is
nearly independent of temperature (or fluctuation ampli-
tude for tissues), since real spontaneous processes, with
A% <0, have a temperature-independent probability in
our Monte Carlo dynamics. In contrast, temperature
acts on neutral processes as on diffusion. Finally, some
thermally activated processes may depend exponentially
on temperature. More precisely, processes which need
virtual two-spin flips are exponentially sensitive to tem-
perature, and processes which need virtual n-spin ex-
changes to overcome an energy barrier may simply never
happen at low temperatures (resulting in a frozen pattern
except at high temperatures). In this case, low tempera-
ture and zero temperature are equivalent, with the pat-
tern freezing because two-spin processes are forbidden.
Note that area conservation essentially requires multispin
processes, since a single flip can never conserve cell areas.
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D. Simulation method

1. Measured quantities

We characterize patterns by their topological distribu-
tions, by their boundary lengths, and by the correlations
between these quantities, which are all standard measure-
ments for cellular patterns [27]. These are also quantities
which can be measured, in principle, in biological experi-
ments. Since the areas of cells are constrained, the distri-
bution of cell areas is generally less informative. Also, we
exclude the “cell” defining the medium from our topolog-
ical calculations. We define the following quantities:
p(n), the probability that a given cell has n sides; its /th
moments,

w=3 pln)n—{n)), (6)

n=1

where (n) is the average number of sides of a cell; the
total boundary length, i.e., the total number of
mismatched bonds between neighboring lattice sites; and
the fractional boundary length, between types 7, and 7,,
i.e., the number of mismatched bonds between a spin of
type 7, and a spin of type 7, divided by the total number
of mismatched bonds. In addition, since the average
number of sides of a cell in an ideal infinite cellular pat-
tern with threefold vertices must be six, while the average
number of sides of a cell in contact with the medium is
five, and of an isolated cell, one, we must distinguish the
“total” topology calculated using all the cells from that
for “bulk” cells which are not in contact with the medi-
um [36].

2. Annealing

Since we perform our simulation at nonzero tempera-
ture, there is no requirement that cells be simply connect-
ed. In addition, cell boundaries, especially between low-
energy (dark) cells, can crumple if the temperature is
comparable to the boundary energy; e.g., in most of the
simulations we will discuss, J;; =2, so the energy of a spin
on a light-light boundary is at most 16, comparable to the
usual simulation temperature range of =5 to 10. Since
this dispersal and crumpling is a defect of the simulation
and is not biologically realistic, we perform a set of zero-
temperature annealing steps before characterizing the
pattern [35]. To determine how many annealing steps to
perform, we ran a zero-temperature annealing on an
equilibrated all-light-cell pattern generated at 7 =35 using
Jy =2, Jjp, =38 (yielding y,,, =7) and A=1, similar to the
one defined below (but unannealed), to ensure consistency
with the study of the transient. Since the crumpling and
discontinuity of patterns is worse for lower surface ener-
gies, this situation is a worst-case limit.

In Fig. 2(a) we show (n ) for the bulk and total pattern
as a function of time. Note that the value for the total
pattern is always less than for the bulk, but follows it
closely. We are interested in the degree to which {(n)
exceeds 6, since this reflects the number of nonsimply
connected cells, so we will discuss only the bulk statistics
in the remainder of this paper. We begin with the equili-
brated initial condition discussed below in Sec. II D 3 and

2133

shown in Fig. 4(b). The initial value of (n) is substan-
tially greater than 6, indicating the presence of numerous
disconnected cells. After two annealing steps the bulk
{n ) has decreased to within 0.2% of its limiting value of
5.999+0.004, showing that only a few disconnected cells
are present (note that on average a cell composed of two
sections of roughly equal area will have 10 or 11 sides).
The higher bulk moments [Fig. 2(b)] are sensitive to the
presence of even one or two disconnected cells. In partic-
ular, for about 1000 cells, the change of even a single cell
from 11 sides to 10 sides changes the bulk u, by 0.4,
about 40% of its equilibrium value. All three bulk mo-
ments decrease rapidly for the first two annealing steps
and then very slowly. After two steps u, is within 9% of
its long-time value of 0.601%0.006, and 5, which is nor-
mally small and positive in our simulations, is within
40% of its long-time value of 0.016910.006. u, is still
20% above its final value of around 1.04=%0.01, but to
bring these values within 3% error we need 20 MCS of
annealing. If we look at the total moments including

[
o
=
w2
L
=
ot
o
=
=
=
4
5.8 1 1 A i
0 10 20 30 40
Time (MCS)
Z
=
)
E
=]
=
=
=
M
-0.5 1 1 1
0 10 20 30 40

Time (MCS)

FIG. 2. Annealing. Simulation. J;=2, J;,=8 (yielding
Yim=7), T=0, and A=1. The initial condition is the equili-
brated pattern shown in Fig. 4(b). (a) The average number of
sides per cell in the bulk (circles) and for the entire aggregate
(bullets) as a function of MCS at 7=0. (b) The higher topologi-
cal moments as a function of MCS: u, (circles), u; (triangles), u,
(squares).
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edge cells, we find qualitatively identical behavior, since
the cell-medium surface has high energy and hence does
not crumple.

We can understand this evolution if we look at a detail
of the actual pattern. The initial pattern, Fig. 3(a), has
crumpled boundaries, with numerous nearby disconnect-
ed regions of a few spins. After two annealing steps [Fig.
3(b)], all these defects have disappeared. However, there
remain a few grains consisting of two widely separated
parts, each of which contains many spins. These take a

(b)

(c)

FIG. 3. Annealing. Simulation. J;=2, J,,,=8 (yielding
Yim=17), T=0, and A=1. Details of cell boundary evolution
during 7 =0 annealing for the run shown in Fig. 2. Each cell
area is constrained to be around 40 spins. We show only cell
boundaries, i.e., lattice links between unlike spins. (a) Unan-
nealed. Cell walls are crumpled and there are numerous nearby
disconnected spins. (b) After two MCS the walls are compact
and there are no few-spin disconnected regions. However,
larger disconnected regions persist. (c) Even after 20 MCS a few
disconnected regions remain.
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very long time to reconnect, hence the slow equilibration
of the moments [Fig. 3(c)]. In some cases they can freeze,
in which case the pattern will never equilibrate. In the
example shown, if we look directly at p(n) we find that
there are two persistent disconnected cells with approxi-
mately 11 sides. Rather than employing a long and com-
plicated annealing schedule to attempt to eliminate such
grains, we prefer to accept them as setting a natural limit
of about 10% on the accuracy of our moment calcula-
tions, especially since the normal fluctuations of the mo-
ments are of this order or larger.

Since annealing also evolves the pattern as well as re-
moving defects, we wish to use as little as possible. We
therefore, unless otherwise noted, perform two MCS of
T =0 annealing for all displays and statistics. We anneal
the displayed data only and do not change the spin array
used in the simulation.

3. Initial conditions

We have to choose initial conditions with an already
equilibrated side distribution. To obtain them, we start
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FIG. 4. Global pattern equilibration. Simulation. J;=2,
Jie =8 (yielding y,, =7), T =S5, and A=1. (a) Initial rectangu-
lar pattern. (b) Rounded pattern after 400 MCS.
(n)=6.04+0.01, p©,=0.69+0.03, ©;=0.03+0.05, u,=1.43
10.12. We use this pattern in other simulations as an equili-
brated initial condition. Displayed patterns are unannealed.
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at first with an arbitrary pattern, here rectangular cells.
The equilibration of such a pattern requires both the
small-scale breaking of the symmetry of the parallel cell
walls and occasional four wall vertices and the large-scale
rearrangement of the pattern to eliminate its overall
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FIG. 5. Global pattern equilibration. Simulation. Statistics
for Fig. 4. J,;=2, Jy, =8 (yielding ¥, =7), T=5, and A=1.
(a) Evolution of the total boundary length. (b) Evolution of the
bulk topological moments, u, (circles), u; (triangles), s
(squares). (c) Evolution of the light-Medium interface fractional
length. Statistics are calculated after ten MCS of T =0 anneal-
ing.

square shape. Thus this initial condition tests both large-
and small-scale equilibration. We use only one cell type
[with J;=2 and J;;; =38 (yielding ¥ ,,=7), intermediate
between future dark and light cells, T=5, A=1] as we
are interested only in the geometry of the walls, not in the
rearrangement of dark and light cells.

We show the initial condition in Fig. 4(a) and the pat-
tern after 400 MCS in Fig. 4(b). We calculate all statis-
tics with ten MCS of T'=0 annealing; however, both pat-
terns are shown without annealing. In Fig. 4(b) the cell
walls are essentially randomly oriented, and the aggregate
has rounded into a natural-looking shape, so that none of
the original rectangular outline survives. If we look at
the total boundary length [Fig. 5(a)], the bulk topological
moments [Fig. 5(b)], or the fractional light-Medium
boundary length [Fig. 5(c)], we see that they are stable
after 400 MCS, the transient being definitely over. The
averaged bulk moments are {n)=6.04£0.01,
1,=0.69£0.03, ©u;=0.03+0.05, u,=1.43+0.12. We
refer to this pattern as equilibrated, and employ it as the
initial condition for our other simulations. We then ran-
domly select the cells types, with a seed that we can
choose to keep or change. However, we note that while
the pattern has no spurious symmetries, it is not neces-
sarily locally equilibrated for different values of surface
energy. Therefore we expect a brief (roughly one to five
MCS) transient in the topological moments due to local
rearrangements to adjust to changes in surface energies.

III. RESULTS
A. Negative surface tension: Checkerboard

1. Observations

Honda, Yamanaka, and Eguchi analyzed the formation
of a checkerboard pattern of gland cells (light) and ciliat-
ed cells (dark) during the sexual maturation of avian ovi-
duct [37]. We reproduce their experimental images in
Fig. 6. The initial state is one in which the two cell types
are mixed with significant homotypic contact between ir-
regular shapes [Figs. 6(a) and 6(c)]. However, the distri-
bution of cell types is more homogeneous than a random
assignment. During maturation, each ciliated cell divides
once, and cells locally rearrange into a checkerboard pat-
tern. Cells become mostly rectangular, with minimal
homotypic contact [Figs. 6(b) and 6(d)]. However, the
pattern remains far from an ideal checkerboard, since it
contains many defects. Note that in both cases the cell
areas of the two types are different.

2. Simulations

Honda, Yamanaka, and Eguchi found experimentally
that J,; —Jy, =~J 43 —J 1y, which corresponds to a negative
Y- By using the same rough equality to assign our
values for the Js, J; =10, J;;, =8, J;; =6, Jps =Jgpy =12
(yielding v, =—3, Yiu =7, Yamu=38), T =10, and A=1,
we simulate also the formation of a checkerboard, begin-
ning from our equilibrated initial condition with random
cell-type assignments [Figs. 7(a)-7(d)].
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FIG. 6. Checkerboard. Japanese quail oviduct epithelium,
photographed by Honda, Yamanaka, and Eguchi, reprinted
with permission from H. Honda, H. Yamanaka, and G. Eguchi,
J. Embryol. Exp. Morph. 98, 1 (1986). Copyright Company of
Biologists, Ltd., Cambridge, England. (a) and (c) Immature ovi-
duct. (b) and (d) Mature oviduct after the division of each ciliat-
ed (dark) cell.

During the first few MCS, small patches of checker-
board appear immediately [Fig. 7(a)], and grow [Fig. 7(b)]
till they cover the whole pattern [Fig. 7(c)]. During this
period the two cell types rapidly and spontaneously inter-
calate. As the equilibrated side distribution for a hetero-
typic aggregate is not the same as for the homotypic ag-
gregate which we employ as our initial condition, we
have a transient of roughly 50 MCS during which the to-
tal boundary length shortens rapidly [Fig. 8(a)] and the
topological moments equilibrate [Figs. 8(c) and 8(d)].

After this initial rapid reorganization, cells continue to
diffuse locally. Thus heterotypic cells gradually invade
homotypic clusters. The contact length of the two types
with the medium remains roughly constant and equal
throughout. However, even at long times, many defects
remain in the pattern [Fig. 7(d)], since it is difficult for
cells to migrate long distances to overcome initial inho-
mogeneities in the distribution of light and dark cells.

Defect suppression is an activated process, since there
are energy barriers to transporting two oppositely
charged defects across large regions of perfect checker-
board so that they can meet and annihilate. This activa-
tion energy causes large-scale inhomogeneities in the
light and dark concentration to persist in the pattern,
while local discrepancies disappear. Such incomplete
mixing occurs even in the observation of Honda, Yama-
naka, and Eguchi [Figs. 6(b) and 6(d)] [37].

The total length decreases monotonically in time,
without any sign of saturation during our simulations
[Fig. 8(a)]. This apparent logarithmic decrease in bound-
ary length suggests that the pattern is overcoming succes-
sively higher energy barriers by thermal activation. If we
look at the fractional contact lengths [Fig. 8(b)], we see
the heterotypic contact length increase at the expense of
homotypic contact length with a gradual saturation. The
average number of sides [Fig. 8(c)] and the bulk moments
[Fig. 8(d)] are essentially constant after 10 MCS, so the
pattern reaches topological equilibrium extremely quick-
ly. We give the averaged moments in Table I.

3. Temperature

We can investigate this activated process in more detail
by comparing the evolution at different temperatures for
identical initial conditions. In Fig. 9(a) we show the
light-light homotypic interface lengths and in Fig. 9(b)
the light-dark heterotypic interface lengths for a series of
different temperatures. The 7 =0 simulation freezes
after about 100 MCS.

For all except the T =0 simulation, the light-Medium
interface [Fig. 9(c)] gradually increases at the expense of
dark-Medium interface. However, a light monolayer
never forms. At long times, the rate of defect suppres-
sion, as well as the even averaged bulk moments (Table I),
increase with temperature.

The T =2, 5, and 10 simulations maintain a constant
length difference after the first ten MCS. That is, their
rate of evolution is the same, indicating that the tempera-
ture affects only the initial rapid equilibration and not the
subsequent evolution. If we look at the image directly we

TABLE 1. Averaged bulk moments of the evolved checkerboard as a function of temperature.
Statistics are calculated after two MCS of T'=0 annealing. Errors are one standard deviation.

T (n) H2 M3 Haq
0 6.037+0.002 0.755+0.002 0.078+0.003 1.65+0.01
2 6.04+0.01 0.67+0.04 —0.05+0.03 1.46+0.12
5 6.02+0.01 0.724+0.04 0.05+0.03 1.57+0.17
10 6.06+0.02 0.79+0.05 —0.02+0.04 1.83+0.25
15 6.09+0.02 0.86+0.04 0.07+0.04 2.25+0.30
40 6.25+0.04 1.28+0.07 0.58+0.26 6.68+1.40
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find that cells in “‘checkerboard” regions of these low-
temperature simulations are effectively frozen.

On the other hand, those in the high-temperature
simulations (7°=15 and 40) are able to move freely. In
addition, the fraction of the aggregate showing ordered
checkerboard decreases at higher temperatures and the
interface with the medium fluctuates greatly, producing
large concave regions which do not occur at lower tem-
peratures. The light-light homotypic fractional boundary
length initially decreases and then levels off [Fig. 9(a)],
since the temperature is sufficient to overcome any energy
gain due to further boundary length reduction. The
light-dark heterotypic interface is exactly complementary
in its evolution [Fig. 9(b)], but with the medium the
higher interface  energies apparently  suppress
temperature-driven mixing. At 7 =40 the averaged bulk
moments at long times are significantly different from
those for all the other temperatures (Table I). The con-
sistency between moments of the low-temperature simu-
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lations suggests that these might be useful quantities to
measure to seek experimental confirmation of the model.

Thus there are two phase transitions: one near T =0
between a frozen unmixed pattern and a mixed pattern,
and a second between a mixed rigid phase and a liquid
near T =15. The second corresponds to a mixing transi-
tion, the energy gained by the perfect periodic alternation
of dark and light cells being compensated by the thermal
fluctuations. Its transition temperature seems dual to the
“spinodal decomposition” critical temperature 7., for
cell sorting.

B. Cell sorting
1. Observations
Cell sorting is the classic behavior of mixed heterotypic

aggregates. In Fig. 10 we show an experimental observa-
tion of Armstrong of cell sorting of neural (light) and pig-

FIG. 7. Checkerboard. Simulation. J; =10, J,;,=8, J;3 =6, Jjyy =J g =12 (yielding vy =—3, Yy =7, Yaur=38), T =10, and
A=1, random initial cell type assignment. (a) 10 MCS, (b) 100 MCS, (c) 1000 MCS, (d) 2000 MCS. Patterns are displayed after two

MCS of T =0 annealing.
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T =0 annealing.

mented (dark) retinal cells from chicken embryos [6]. In-
itially, the dark cells are dispersed throughout the aggre-
gate with some in contact with the medium [Fig. 10(a),
after 5 h]. At a later time [Fig. 10(b), after 19 h], they
have formed large clusters and are surrounded by a
light-cell monolayer. Later still [Fig. 10(c), after 48 h]
they form a single rounded mass inside each aggregate
which may or may not be well centered.

An identical process occurs, e.g., in mixed aggregates
of the slug phase of the slime mold Dictyostelium
discoideum. We reproduce the observations of Takeuchi,
Tasaka, and Kakutani in Fig. 11: (a) early mixed state,
(b) initial sorting, (c) light-cell monolayer formation, (d)
final sorted state [38,39]. Again, the dark cells are not
centered in the aggregate.

In both cases, the light-cell monolayer forms long be-
fore the bulk cells sort completely. It is important to
remember that all these images show fixed cells, and were
taken from several different aggregates. They are not a
continuous time series for a single aggregate. In addition,
they show two-dimensional sections of an initially three-

dimensional animal. Steinberg, Garrod, and Nicol ob-
served truly two-dimensional cell sorting in confluent
monolayers [40].

Technau and Holstein have made a series of direct,
nondestructive observations of cell sorting during the re-
generation of three-dimensional hydra aggregates. Their
method allows them to measure the evolution in time of
individual aggregates and to obtain quantitative measure-
ments of the formation of the ectodermal (light cells in
our model) monolayer [15]. They find that the initial sur-
face sorting is rapid (about 12 h) and slows apparently
logarithmically in time, which is strong evidence against
the involvement of any diffusible substance whose effect
should increase in time. They have also measured in-
directly the relative strengths of the intercellular
adhesivities by aggregating dissociated cells in a rotating
shaker flask. They find that for hydra epithelial cells, en-
doderm (d in our model) is more cohesive than ectoderm
(I in our model). More precisely, their observations im-
ply Juq <Jiq <Jy <Jps,J 40, leaving the relation between
Jiar and J 4, undetermined.
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2. Simulation of phase separation

In our simulations we use the equilibrated pattern dis-
cussed in Sec. II D 3 as our initial condition [Fig. 12(a)],
with random assignment of cell types. In accordance
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FIG. 9. Checkerboard. Simulation. J; =10, J,;,=8, J;; =6,
Jiy =Jan =12 (yielding vy =—3, ¥iny =7, Yaur =8), and A=1,
identical random initial cell type assignment for each tempera-
ture. Comparison of fractional boundary length evolution for
different temperatures. (a) Light-light interface. (b) Light-dark
interface. (c) Light-Medium interface. Temperatures: T =0
(open circles), T =2 (bullets), T=5 (open triangles), T =10
(solid triangles), T =15 (open squares), T =40 (solid squares).
Statistics are calculated after two MCS of 7' =0 annealing.
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with the observations of Technau and Holstein, the ener-
gies are J; =14, J, =2, J;; =11, J 3, =J ;5 =16 (yielding
Yid =3, '}/]M=9, Yam = 15), T= 10, and A=1.

The initial sorting into small clusters happens very rap-
idly over the first few MCS, driven by the large energy
difference J ; —J;; =9 acting on isolated dark cells [Fig.
12(b)]. These clusters then merge, resulting in a slow in-
crease of their average length scale [Fig. 12(c)]. The total

(a)

(b)

(c)

FIG. 10. Cell sorting. Observations by Armstrong of cell
sorting between pigmented (dark) and neural (light) retinal cells
in seventh-day chick embryo in three-dimensional suspended
aggregates. Reprinted with permission from P. Armstrong,
Crit. Rev. Biochem. and Mol. Biol. 24, 119 (1989). Copyright
CRC Press, Inc., Boca Raton, FL. (a) Random mixing at 5 h.
(b) Partial cell sorting at 19 h. (c) Complete cell sorting at 48 h.
Armstrong notes that the detached dark cells in (b) and (c) are
dead. Pictures show two-dimensional sections of three-
dimensional aggregates.
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FIG. 11. Cell sorting. Drawing by I. Takeuchi, T. Kakutani
and M. Tasaka of cell sorting between prespore (dark) and pre-
stalk (light) Dictyostelium discoideum cells in three-dimensional
aggregates cultured in roller tubes. (a) Random mixing at 2 h.
(b) Partial cell sorting at 4 h. (c) Light-cell monolayer forma-
tion at 6 h. (d) Complete cell sorting at 48 h. Pictures show
two-dimensional sections of three-dimensional aggregates. Re-
printed from I. Takeuchi, T. Kakutani, and M. Tasaka [39] by
permission of Wiley-Liss, a division of John Wiley and Sons,
Inc. Copyright, John Wiley and Sons, Inc., 1988.

boundary length reaches its equilibrium value by about
100 MCS [Fig. 13(a)]. Similarly, the moments are within
one standard deviation of their final values by 200 MCS
[Figs. 14(a) and 14(b)], though they appear to increase
slightly at very long times, while the correlation func-
tions, which we do not show, exactly mirror the evolution
of the boundary lengths. We give the bulk moments in
Table II.

The light cells rapidly replace dark cells in the bound-
ary [Fig. 13(b)] due to the energy difference
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Jagy —Jaqa=14 versus Jj,—J;=2. After 600 MCS a
monolayer of light cells surrounds the aggregate. The
boundary ceases to be a driving force in the evolution
[Figs. 12(d)-12(f) and Fig. 13(b)] and the internal rear-
rangement becomes boundary independent. The time
dependence of the surface sorting is very similar to that
Technau and Holstein observed in hydra aggregates [15].

Bulk sorting appears in Fig. 13(c). The homotypic
boundary rapidly (in about four MCS) replaces the initial-
ly dominant heterotypic boundary. The amount of
homotypic boundary then increases logarithmically while
the heterotypic boundary decreases. The total homotypic
boundary of the dark cells dominates, since the light-cell
boundary with the medium decreases the amount of
light-cell homotypic boundary. We obtain an identical
result if we look at the type-type correlation function
[Fig. 13(d)].

3. Long-time behavior

In Figs. 12(e) and 12(f) we see the reattachment of a
large independent cluster of dark cells to the main dark
cell mass. In Fig. 12(g), the last isolated light-cell cluster
breaks through the surrounding dark-cell mass. This
breakthrough appears to be a diffusive process which
does not occur at zero temperature. It also depends on
Jig <Jy. We will discuss in Sec. IITE the biologically ob-
served case of partial cell sorting, in which such break-
throughs cannot occur.

At longer times, the dark cells form a single large clus-
ter surrounded by light cells, which rounds very slowly,
being essentially round after 13500 MCS [Fig. 12(h)].
However, a very slow rearrangement continues with no
obvious cutoff. This process is driven over a one-
dimensional surface by the small surface tension y,;, =3,
while the cells that need to move form a two-dimensional
cluster. In three dimensions, a cluster of N cells would be
driven by N!/3 times more cells, thus we would expect its
rearrangement to be much faster. We observe the same
crossover at 4000 MCS from logarithmic cluster growth
to slow rearrangement if we examine the type-type corre-
lation function [Fig. 13(d)].

Note that even at 13 500 MCS the dark-cell cluster is
not centered. There is no first-order energy difference be-
tween a round dark-cell cluster centered in the white-cell
cluster and one that is off center. There may be an ex-
tremely weak second-order effect resulting from the fact
that the light-cell boundaries adjacent to the dark cluster
and to the interface with the medium are parallel for a

TABLE II. Averaged bulk moments of evolved cell sorting as a function of temperature. Statistics
are calculated after two MCS of 7'=0 annealing. Errors are one standard deviation.

T (n) H2 M3 Hq
2 5.994+0.004 0.48+0.04 —0.04+0.02 0.74+0.14
5 6.02+0.01 0.50+0.04 0.01£0.03 0.88+0.11
10 6.124+0.02 0.77+0.05 0.32+0.15 2.47+0.55
15 6.30+0.04 1.18+0.09 1.04+0.30 6.71+1.69
20 6.50+0.06 1.64+0.15 2.14+0.61 13.84+3.72
40 6.82+0.09 2.52+0.21 4.45+0.83 32.42+7.80
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Statistics are calculated after two MCS of T =0 annealing.
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centered dark cluster and skew otherwise. However,
differences in topological charge are usually screened
over one cell diameter in soap froth, so the off-center po-
sition may be a metastable equilibrium [27,41]. If this
phenomenon does cause a centering of the dark cluster, it
occurs on a time scale too long for us to observe. In real
biological systems, the cohesive cluster is often off center
with respect to the aggregate as a whole [13].

We can relate an interesting biological observation to
one of the preceding results. In our simulations we see a
quick boundary-driven phase (600 MCS) resulting in
monolayer formation, followed by a very slow (10* MCS)
bulk rearrangement. This could explain why, in Hydra
cell aggregates, a monolayer of ectodermal cells forms
over 6 h but complete bulk sorting does not occur [8].
Instead, a central cavity forms after 16 to 20 h [8,9] (see
Sec. IIT F) and the aggregate expels unsorted cells which
then die. Our simulation suggests that complete sorting
in hydra would need on the order of 10% h, i.e., a few
days, by which time the aggregate has already recon-
structed its head and neural net, and almost completed its
regeneration into a normal animal.
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FIG. 14. Cell sorting. Simulation. J,; =14, J,,=2, J; =11,
I =J =16 (yielding v,3=3, Yy =9, Yaur =15), T =10, and
A=1, random initial cell type assignment. Topological mo-
ments of the simulation shown in Fig. 12. (a) {n ). (b) Topolog-
ical bulk moments: u, (circles), u; (triangles), u, (squares).
Statistics are calculated after two MCS of T =0 annealing.
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FIG. 15. Cell sorting. Simulation. J,; =14, J,;,=2, J,=11,
iy =Japy =16 (yielding v, =3, vy =9, Yanr=15), and A=1,
identical random initial cell type assignment for each tempera-
ture. Comparison of boundary length evolution for different
temperatures. (a) Light-dark heterotypic interface. (b) Light-
Medium interface. (c) Total boundary length. Temperatures:
T =2 (open circles), T=5 (bullets), T=10 (open triangles),
T =15 (solid triangles), 7T =20 (open squares), T =40 (solid
squares), T'=80 (crosses). Statistics are calculated after two
MCS of T =0 annealing.
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4. Temperature

As in the case of the checkerboard, a comparison of
cell sorting at different temperatures for fixed A=1
proves instructive. If we look at the averaged bulk mo-
ments at long times (Table II) we see a consistent increase
of all moments with temperature, apparently resulting
from the presence of nonsimply connected cells. We
show the light-dark heterotypic boundary length in Fig.
15(a), and the light-Medium boundary length in Fig.
15(b). As we did for the checkerboard, we can distin-
guish three regimes: a low-temperature freezing, a “nor-
mal” regime which is qualitatively independent of the
temperature, and a high-temperature disordered regime.

At T =0 the pattern rapidly freezes and does not sort.
The T =2 simulation sorts very slowly and does not form
a light-cell monolayer.

For the other simulation temperatures, at short times
(0—10 MCS) the boundary length is higher for higher
temperatures, as we would expect from their larger
thermal fluctuations. At intermediate times (10-100
MCS), the higher temperatures evolve more rapidly, re-
sulting in some crossing of lengths [Figs. 15(a)-15(c)]. At
long times (100-1000 MCS) they reach a plateau at
roughly the same value. The differences in slope strongly
suggest that monolayer formation depends on thermally
activated processes; on the other hand, the final state is
temperature independent over a fairly wide range.

The T =5 simulation (although slower) and the T"=10,
15, and 20 simulations form a group that sorts normally,
eventually achieving the same values for all lengths; the
evolution of all the total boundary lengths [Fig. 15(c)] is
fairly consistent. The 7 =40 simulation reaches a pla-
teau beyond which thermal fluctuations prevent it from
reducing its light-dark heterotypic boundary length.
However, thermal fluctuations are not strong enough to
prevent a light-cell monolayer from forming rapidly (50
MCS). At T =80, the light-dark interface decreases to
zero because all cells are unstable and disappear; the light
cells disappear more quickly because of their higher ener-

gy.
5. The area constraint

Finally, we investigate the effect of the area constraint
by varying A at a fixed temperature of T'=5. In Fig.
16(a) we plot the evolution of the total length as a func-
tion of the MCS. At low A not all cells are conserved.
For A=0.1, all cells shrink and disappear. For A=0.2 all
the light cells shrink and disappear but the dark cells are
conserved. For A=0.5 a few light cells disappear, but
most survive.

For values of A higher than 0.5, all cells are conserved.
We show the boundary length evolutions in Figs. 16(b)
and 16(c). The pattern does not freeze for any of the A
values that we studied. Moreover, the moments appear
relatively independent of A except for a possible slight in-
crease (Table III).

However, A strongly affects the relative timings of bulk
and surface sorting. For instance, in the bulk, higher A
values do not prevent cell sorting, e.g., the reduction of
light-dark heterotypic boundary length, but the sorting
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FIG. 16. Cell sorting. Simulation. J; =14, J;;=2, J; =11,
Ty =J =16 (yielding vy =3, Y1y =9, Yaur =15), and T =5,
identical random initial cell type assignment for each A. Com-
parison of boundary length evolution for different A. (a) Total
boundary length. (b) Light-dark heterotypic interface, (c)
Dark-Medium boundary length. A: A=0.1 (open circles),
A=0.2 (bullets), A=0.5 (open triangles), A=1 (solid triangles),
A=2 (open squares), A=35 (solid squares), A=10 (crosses).
Statistics are calculated after two MCS of T'=0 annealing.
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TABLE III. Averaged bulk moments of the cell sorting as a function of A. Statistics are calculated
after two MCS of T =0 annealing. Errors are one standard deviation. Note that cells are unstable for
A=0.1and 0.2, so the average is over a changing light-dark population.

A (n) B2 B3 Ba
0.1 6.02:£0.01 0.79+0.12 0.01+0.10 1.89+0.72
0.2 6.02::0.02 0.72+0.04 0.06+0.07 1.55+0.24
0.5 6.02:0.01 0.57-0.04 0.00+0.05 1.08+0.14
1.0 6.02-£0.01 0.50+0.04 0.01+0.03 0.88+0.11
2.0 6.03+0.01 0.55+0.03 0.01+0.02 0.99+0.12
5.0 6.04--0.01 0.57+0.04 0.00+0.05 1.10+0.18
10.0 6.06+0.02 0.57+0.03 0.04+0.05 1.1140.12

for A=10 is ten times slower than for A=0.5 [Fig. 16(b)].
The change is even more dramatic for the formation of
the surface light-cell monolayer, which slows by nearly a
factor of 50 [Fig. 16(c)]. Indeed, it is not clear that a true
monolayer will ever form in the limit of large A. Certain-
ly, the monolayer will form after the bulk has finished
sorting, a striking qualitative change in the pattern evolu-
tion. This effect of cell rigidity on time scales should also
be observable in biological tissues [42].

C. Engulfment

A different initial condition involves contact between
two compact masses of different cell types. In such ex-
periments, aggregates of two different types are brought
into contact in hanging droplets so that there is no in-
terference from a substrate. Such experiments usually
yield the same final configuration as cell sorting from an
initial mixed aggregate [6,14]. This result supports
Steinberg’s idea that global energy minimization deter-
mines the final configuration. In Fig. 17, we show an ex-
perimental study of Armstrong of pigmented retinal cells
engulfing heart cells in chicken embryo cell aggregates.
Similarly, recombination between intact portions of hy-
dra endoderm and ectoderm yields quick engulfment in a
process similar to aggregate regeneration [43].

FIG. 17. Engulfment. Observation by Armstrong of cell
engulfment of heat cells (light) by pigmented retinal cells (dark)
from tenth-day chicken embryo in three-dimensional suspended
aggregates. Reprinted with permission from P. Armstrong,
Crit. Rev. Biochem. and Mol. Biol. 24, 119 (1989). Copyright
CRC Press, Inc.,, Boca Raton, FL. Figure shows a two-
dimensional section of a three-dimensional culture after 48 h.

In Fig. 18 we show a simulation of this situation, where
we begin with our equilibrated pattern with the top half
assigned to light cells and the bottom half to dark cells
[Fig. 18(a)]. The energies are identical to the cell-sorting
case: J” = 14, Jdd :2, Jld =1 1, JIM :JdM =16 (yleldmg
Yia=3 Ymu=9, Yauy=15), T=10, and A=1. Engulf-
ment does occur but is very slow [Figs. 18(b) and 18(c)],
with the light-cell monolayer still not complete after
10000 MCS [Fig. 18(d)].

However, if we look at the boundary lengths as a func-
tion of time [Figs. 19(a) and 19(b)], the migration shows
no evidence of logarithmic slowing down; that is, it is
spontaneous. Only the few spins at the triple light-dark-
Medium vertex experience directly the surface tension
caused by the light-Medium, dark-Medium energy
difference. These spins in turn drag the whole bulk of the
light cells behind them. As the triple point moves for-
ward, it must drag an ever-increasing mass of light mono-
layer, gradually slowing the evolution. Note that dark
cells sometimes break through the light-cell monolayer,
which does not occur in normal cell sorting [Figs. 18(a)
and 18(d)]. The breakthrough is due to thermal fluctua-
tions, without which the front spins would pin and evolu-
tion would cease.

The total boundary length equilibrates after about 1000
MCS, with the moments equilibrating after about 100
MCS ({n)=6.1410.03, u,=0.76+0.06, u;=0.39
+0.15, puy=2.81%£0.74). The correlation functions, of
course, do not equilibrate within the duration of the run.
A simple extrapolation, e.g., a linear fit (R 2=0.987), sug-
gests that it would take about 11 000 MCS for complete
engulfment.

The same slow engulfment occurs in the Voronoi mod-
el for cell sorting, in which engulfment is six to ten times
slower than normal cell sorting [33]. The Voronoi model
engulfs faster than the Potts model, however, because a
single cell drags the monolayer, rather than a single spin
exactly at the triple contact. We expect the evolution to
be much faster in three dimensions, and also in biological
aggregates, where a one-dimensional line of cells drags a
two-dimensional monolayer and in which cell motions
are less constrained.

D. Position reversal
Occasionally in biological systems there is an apparent

reversal of the light-dark order described above, with a
layer of cohesive dark cells surrounding a layer of less
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cohesive light cells [6]. In spite of the adhesivity
differences, such a reversed pattern is the true energy
minimum, since it forms when the dark cells have a lower
surface tension with the medium [23].

There are many other possible initial conditions of bio-
logical relevance. For example, if no dark cells are ini-
tially in contact with the medium, we expect normal cell
sorting to follow, since the dark cells have no opportunity
to sort outwards [44]. However, we have not investigated
these initial conditions. What we want to do here is only
to show that we successfully reproduce biologically ob-
served behaviors for various combinations of surface ten-
sions, whatever the actual surface energies (which act on
each cell’s shape and movement, but not on the global
configuration).

In our simulation we use a (very) large energy between
the medium and the light cells. Our energies are J, =14,
Jm=30, J;y=2, Jpy=16, J,;=11 (yielding y,=3,
Yy =23, Yapuy =15), T=10, and A=1. We show an early

(a)
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and a late state of the simulation evolution in Fig. 20.

All of the moments are equilibrated by ten MCS. The
large 7, causes some unusual cell shapes in Fig. 20(b).
The dark cells initially in contact with the medium
stretch rapidly to create a dark monolayer (complete by
40 MCS). The monolayer cells remain stretched until the
outward diffusion of additional dark cells allows them to
form a monolayer without stretching. In spite of this cell
stretching, the moments for the bulk and entire pattern
are the same within error: (n)=6.08%0.03,
#;=0.71£0.06, 1;=0.24+0. 14, u,=2.40+0.65.

After this initial transient, the correlation functions
and boundary lengths [Figs. 21(a) and 21(b)] show two
other regimes. Until about 200 MCS, sorting accelerates.
The surface cells still show stretching at 500 MCS [Fig.
20(c)], and achieving completely normal surface cell
shapes requires approximately 1000 MCS. Then, segre-
gation and coalescence of light cells gradually slow down,
since puncturing continuous ribbons of cohesive dark
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FIG. 18. Engulfment. Simulation. J, =14, J,; =2, Jjy =11, J;yy =J 43y =16 (yielding v;;=3, ¥y =9, Yupr =15), and A=1, initial
cell type assignment upper half light, lower half dark. (a) Initial condition, 0 MCS. (b) 1000 MCS. (c) 5000 MCS. (d) 10000 MCS.
(n)=6.14£0.03, 4, =0.76+0.06, 11;=0.390.15, 11, =2.81+0.74. Patterns are displayed after two MCS of T'=0 annealing.
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cells is an activated processes with a high-energy barrier
which comes to dominate the sorting. Multiple light-cell
regions still persist at 5000 MCS [Fig. 20(d)].

E. Partial cell sorting

1. Description of the phenomenon

Sometimes the sorting of cell types in an initially mixed
aggregate remains incomplete. Clusters of each cell type
form and grow, but never reach the final state of two con-
nected concentric regions. Instead, the main clusters
trap other large heterotypic clusters. The final state
resembles that shown in Figs. 10(b) and 11(b). Trapping
occurs biologically, e.g., in chicken embryo cells. It is
sensitive to the geometry, initial conditions, and respec-
tive cell proportions [6,13,32,45].

In these observations, homotypic clusters are probably
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FIG. 19. Engulfment. Simulation. J;=14, J,;=2, J;, =11,
Jim=Jay =16 (yielding v,y =3, yiy=9, Yam=15), and A=1,
initial cell type assignment upper half light, lower half dark. (a)
Fractional homotypic boundary length, light-light homotypic
(open diamonds), dark-dark homotypic (solid diamonds). (b)
Fractional heterotypic contact length, light-Medium interface
(circles), dark-Medium interface (bullets), light-dark heterotypic
(crosses). Statistics are calculated after two MCS of T'=0 an-
nealing.
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unable to travel long distances [24]. In an aggregate with
either a very-two-dimensional geometry or a very hetero-
geneous initial distribution of light and dark cells, homo-
typic clusters are distant and have a low probability to
encounter and fuse. Similarly, if the overall number of
light and dark cells is very unequal, clusters of the minor-
ity type have a smaller probability to encounter each oth-
er, and complete cell sorting occurs only above a percola-
tion threshold for the minority percentage. However,
since dark cells sort inwards and light cells sort towards
the boundary to form a monolayer, their respective per-
colation thresholds need not be the same.

What we want to investigate here is the specific effect
of surface tensions on sorting. Can the value of y,; tune
the sorting from total to partial? y,; can determine what
configuration has the minimum energy. When y, is
greater than y g, — ¥, the three interfaces, light-dark,
light-Medium and dark-Medium, are stable and meet at
angles obeying the Young condition. Thus at equilibrium
the light cells do not completely surround the dark-cell
mass.

In addition to this static effect, does y,,; affect the dy-
namics of sorting? We suggest that in complete cell sort-
ing, the movement of light-cell clusters is energetically
neutral so that they can escape by diffusion, but that such
escape is more difficult for a high y,, resulting in partial
cell sorting. We simulate this situation by reversing the
normal cell-sorting energy relation J;,; >J,;, keeping all
other surface energies the same while exchanging J;, and
Jig. We therefore simulate with J,; =11, J;,, =2, J,; =14,
Jine = qa =16 (yielding v, =7.5, v, =10.5, Y ps =15),
T =5,and A=1.

2. Early sorting

We show the evolution of such a simulation in Fig. 22.
We begin with our standard equilibrated random state.
The initial rapid clustering is nearly identical to normal
cell sorting [compare at ten MCS Figs. 12(b) and 22(a)],
though the higher light-dark interface energy results in
smoother, rounder boundaries between the clusters. At
100 MCS the clusters of the two patterns are still similar
in wavelength [Figs. 12(c) and 22(b)]. If we evaluate the
bulk moments for times after 100 MCS, we obtain
(n)»=6.03+0.01, u,=0.57+0.03, u;=0.021+0.04, and
pns=1.11£0.1.

However, the normal cell sorting has nearly completed
its external light-cell monolayer while the partial cell
sorting has not. The failure to form a monolayer is due
to the Young condition being satisfied on the edge of the
aggregate; i.e., even though the light-Medium interface
has a relatively lower energy cost, the dark-Medium in-
terface is still stable and can only be destroyed by the
diffusion of light cells to the aggregate edge.

3. Cluster sorting

The differences between partial and total sorting are
much more clear at 1000 MCS [Figs. 12(d) and 22(c)].
The clusters in the partial cell-sorting case still contain
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many small heterotypic inclusions. Even after 2000 MCS
[Fig. 22(d)] there is no sign of the disappearance of small
dark-cell clusters and no monolayer forms. The high J;,;
energy barrier now blocks diffusion of small clusters,
drastically slowing their migration. This slowing is not
an artifact of the Potts model, and it is probably true, for
small clusters of actual cells, that any movement is more
costly if J;, is higher.

The main contribution to the decrease in heterotypic
contact length now comes from spontaneous cluster
rounding, rather than the coalescence of diffusing clus-
ters. This rounding is slow but steady, hence the ex-
tremely smooth logarithmic evolution [Fig. 23{(a)]. By
rounding, a cluster can come into contact with other
clusters and coalesce, but with a much smaller probabili-
ty than for a mobile diffusing cluster.

If we look at the cell-cell boundary lengths [Fig. 23(a)]
we find that their evolution is logarithmic at all times. If
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we plot them together with the total sorting case [Fig.
24(a)], the discrepancy is clear; the logarithmic fit is
slightly less good (R 2=0.94 rather than 0.999), probably
because of the larger counting error. There does not ap-
pear to be any period in the evolution which is spontane-
ous as opposed to activated; the same applies to the
aggregate-Medium boundary lengths [Figs. 23(b) and
24(b)]. Thus it appears that partial cell sorting in the
Potts model is even more sensitive to temperature than
normal cell sorting.

F. Dispersal

1. Light-light cell dispersal

Even a small change in the surface tension caused, for
example, by a slight quantitative or qualitative change in

FIG. 20. Position reversal. Simulation. J,; =14, Jj,, =30, J ;3 =2, J 3, =16, J;; =11 (yielding ¥, =3, ¥ 15y =23, Yarr = 15), T =10,

and A=1, random initial cell type assignment.

(a) Imitial condition, 0 MCS. (b) 50 MCS. (c) 5000 MCS. (d) 5000 MCS.

(n)=6.08%0.03, u,=0.71£0.06, 1;=0.24+0. 14, u,=2.40+0.65. Patterns are displayed after two MCS of T =0 annealing.
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FIG. 21. Position reversal. Simulation. J; =14, J;3;, =30, J3;, =2, Jypy =16, J;; =11 (yielding v, =3, Y i;r =23, Yanr =15), T =10,
and A=1, random initial cell type assignment. (a) Fractional boundary length of cell-cell contacts, light-light homotypic (open dia-
monds), dark-dark homotypic (solid diamonds), light-dark heterotypic (crosses). (b) Type-type correlation, light-Medium (open cir-
cles), dark-Medium (bullets). Statistics are calculated after two MCS of T =0 annealing.
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FIG. 22. Partial cell sorting. Simulation. J; =11, J,, =2, J;; =14, J;py =J 15, =16 (yielding v ;4 =7.5, ¥ 3y =10.5, y s =15), T =5,

A=1, random initial cell type assignment. (a) 10 MCS, (b) 100 MCS, (c) 1000 MCS, (d) 2000 MCS. Patterns are displayed after two
MCS of T =0 annealing.
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the expression of specialized surface adhesion molecules
can result in a drastic change in the properties of an ag-
gregate [16]. If we increase J; or decrease J,, so that
Jy >Jy, resulting in a negative light-Medium surface
tension, then a spectacular change occurs. Any light
cells which come into contact with the medium separate
from the aggregate as isolated cells surrounded by medi-
um. Meanwhile, the dark cells continue to coalesce (or
similarly mutatis mutandis for J,; and Jg,). We show
such a simulation, with J, =14, J;; =4, J;; =11, J, =2,
T =16 (yielding v ;3 =2, Yy =5, Yap=14), T =5,
and A=1 in Fig. 25. Such sloughing also occurs when
cells die.

2. Light-dark cell dispersal

A more interesting case occurs if we make our partial
cell sorting more extreme by increasing J,;. In this case,
the surface tensions all remain positive, but the Young
condition cannot be satisfied between light and dark cells.
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FIG. 23. Partial cell sorting. Simulation. J;=11, J;;=2,
‘]Id:l4? J{M=JdM=16 (yleldmg '}/1d=7.5, VIMZIO.S,
Yam=15), T=5, and A=1, random initial cell type assignment.
(a) Fractional boundary length of cell-cell contacts, light-light
homotypic (open diamonds), dark-dark homotypic (solid dia-
mond), light-dark heterotypic (crosses). (b) Fractional contact
length with the medium, light-Medium interface (circles), dark-
Medium interface (bullets). Statistics are calculated after two
MCS of T =10 annealing.
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Thus the light and dark clusters separate. We show such
a simulation with J; =14, J,, =2, J;; =35, J;p, =J s =16
(yielding ¥ 3, =27, Y1y =9, Yarr =15), T=5,and A=1 in
Fig. 26. Note that even a very slight decrease of J;,; re-
sults in partial cell sorting (Sec. III E) instead of dispersal.
We show an example with J,;=14, J,,=2, J;;=29,
Iy =Ja=16 (yielding v, =21, y;r=9, Yaur=15),
T =5 and A=1in Fig. 27.

3. Cavities

More complicated examples of vacancy nucleation
occur in gastrulation, or when a compact hydra cell ag-
gregate separates its surface bilayer from the mass of cells
in its center, and then expels the central cells [8,9,45].
However, while we can simulate the nucleation of a
fluid-filled hole with the extended Potts model by chang-
ing the target areas of the cell types to be unequal [Fig.
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FIG. 24. Partial cell sorting. Simulation. Comparison be-
tween statistics shown in Figs. 13 and 23(a). Fractional bound-
ary length of cell-cell contacts, dark-dark homotypic partial cell
sorting (solid diamonds), dark-dark homotypic normal cell sort-
ing (solid squares), light-dark heterotypic partial cell sorting
(crosses), light-dark heterotypic normal cell sorting ( X’s). (b)
Fractional contact length with the medium, light-Medium inter-
face partial cell sorting (circles), light-Medium interface normal
cell sorting (open squares), dark-Medium interface partial cell
sorting (bullets), dark-Medium interface normal cell sorting
(solid squares). Statistics are calculated after two MCS of 7 =0
annealing.
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FIG. 25. Cell dispersal. Simulation. J,;=14, J;,;=4,
Jld = 11, J1M=27 JdM =16 (yieldmg Yid :2, YiM~= _5, VYiam = 14),
T =S5, and A=1, random initial cell type assignment. 480 MCS.
Dark cells remain compact and round, light cells in contact
with the medium disperse. Displayed pattern is unannealed.

28 shows such a case with J,=14, J,=2, J,=11,
Iy =Japy =16 (yielding v, =3, vu=9, Yau=15);
T =35, and A=1], we are not able to stabilize it against
later contraction and disappearance. In real hydra aggre-
gates, it appears that the stabilization of the nucleated
hole depends on qualitative changes in the contact sur-
faces between individual cells [46], particularly the ap-

FIG. 26. Simulation.

Cell dispersal.
Jia=35, Jiy=Japy =16 (yielding v, =27, vy =9, vau=15),

Jy=14, Ju;u=2,

T =5, and A=1, random initial cell type assignment. 2000
MCS. Both light and dark cells remain compact and round, but
the clusters separate. A few isolated dark cells also occur. Pat-
tern is displayed after two MCS of T =0 annealing.
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FIG. 27. Cell dispersal. Simulation. J,;=14, J;;=2,
Jia=29, Jiy=Jay =16 (yielding y;; =21, v,y =9, vaur=15),
T =5, and A=1, random initial cell type assignment. 2000
MCS. Both light and dark cells remain compact and round,
clusters do not separate. The result is an extreme case of partial
cell sorting. Pattern is displayed after two MCS of T =0 an-
nealing.

pearance of gap junctions and other junctions within the
endodermal and ectodermal monolayers [47] and the syn-
thesis of a mesoglea between the layers [45,46]. We hope
to investigate this possibility further in later papers.

IV. CONCLUSION

Using a single model which includes only differential
surface energies and an area constraint, with isotropic
cells and without including detailed membrane or
cytoskeletal properties, we have reproduced various ob-
served biological phenomena of cell sorting between two

FIG. 28. Vacancy nucleation. Simulation. J,=14, J,, =2,
J[d: 1 1, JIM =J,1M: 16 (yle]dlng Yia :3, ’}/IM:9, Yam = 15),
T'=5,A=1, 4,=20, and 4,=40, random initial cell type as-
signment. 200 MCS. The constraint on vacancy nucleation is
removed and a light-cell-lined, fluid-filled central cavity forms.
Pattern is displayed after two MCS of 7' =0 annealing.
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cell types simply by varying the surface energies between
the cells and the medium and between the cell types. We
have analyzed the effect of surface energies in terms of
three surface tensions, which contain all the physical in-
formation concerning the minimum-energy configuration
of the cellular patterns we simulate. Our simulations al-
low us to explore the energy landscape, both qualitatively
by displaying simulated patterns and quantitatively by
measuring statistics on the topological moments of the
patterns. However, the movement of a pattern on its en-
ergy surface depends on two additional parameters, the
temperature and the area constraint strength. Varying
the temperature or area constraint strength in the simula-
tions reveals otherwise hidden details of the local minima
of a pattern’s energy surface. We have derived the fol-
lowing results with reference to both biological and phys-
ical patterns:

(i) For biological cell rearrangement, the observed be-
haviors are similar to our simulations. We therefore sug-
gest that the energy landscape is important to biological
cell sorting and that not only active cells can rearrange:
slightly fluctuating or possibly even purely passive cells,
lacking autonomous motile apparatus, can sort partially
or totally, engulf, disperse, or form checkerboards. Thus
we support either the fluctuation or fluctuationless hy-
potheses concerning cell migration (F or S). The addi-
tional mechanisms required by hypothesis (4), are not
necessary to cell rearrangement, though they may be im-
portant in many biological cases.

(ii) We can distinguish spontaneous or neutral process-
es which have power-law time dependence from activated
processes which have logarithmic time dependence.
Technau and Holstein appear to have observed such loga-
rithmic time dependence in the surface cell sorting of hy-
dra aggregates, which is strong evidence for a differential
adhesion mechanism: if either large fluctuations or active
cell motility made the adhesion energy landscape ir-
relevant, the time dependencies should be either linear or
power law [15].

(iii) Armstrong observed that some tissues which nor-
mally sort completely only sort partially in the presence
of Cytochalasin B [17,25]. This incomplete sorting may
be the biological analog to the freezing we observe at
T =0 in our model, and suggests that the energy surface
for cell migration usually has at least weak local minima
that trap in the absence of fluctuations, thus supporting
hypothesis (F).

(iv) We have shown that in the case of a very high sur-
face tension between two cell types, only active cells are
able to reach the equilibrium configuration, in which the
two fully sorted clusters obey the Young condition.

(v) We have explained why aggregated hydra cells form
a monolayer but do not achieve complete sorting by com-
paring the time scales of these two steps (which the rela-
tive values of the heterotypic and homotypic contact en-
ergies and the area constraint strength determine).

(vi) Physically, we have investigated a phenomenon,
conceptually similar to spinodal decomposition but in
which finite-size effects mostly dominate. The strongest
manifestations of finite size are the fixed length scale of
each cell, i.e., a short-wavelength cutoff, and the limited
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size of the aggregate, which implies not only a long-
wavelength cutoff but also the presence of an outer medi-
um.

(vii) The presence of the cell-Medium boundary
separates complete cell sorting into two phases: a stage
of monolayer formation characterized by rapid cell
motion, followed by a pure bulk rearrangement charac-
terized by logarithmic time dependence. The bulk rear-
rangement itself has three subphases: first a transient
dominated by the short-wavelength cutoff, next a growth
in length scale analogous to that of spinodal decomposi-
tion, and finally a saturation, due to the finite number of
cells, which ends as a pure rounding of already formed
clusters.

(viii) In addition to the previously known causes of par-
tial sorting, we have shown that the surface tensions
affect not only the dynamics at small length scales by
slowing down or freezing cell-cell encounters, but also
that the incompletely sorted state is the equilibrium state
due to the existence of simultaneously stable light-
Medium and dark-Medium interfaces.

(ix) Within our model, we have defined and simulated
two phase transitions: the one at lower temperature is
dynamic, and corresponds to the melting of a frozen pat-
tern into a free pattern; the one at higher temperature is
static, and corresponds to a transition between an energy
and an entropy dominated equilibrium state.

Possible extensions of the model are of two major
types. First, simple extensions of the existing model to
three dimensions (we are currently performing such simu-
lations), multiple cell types and larger numbers of cells.
These should allow us to describe accurately simple cell-
sorting examples like those of Armstrong’s chicken em-
bryo cell aggregates. Second, additions to the Hamiltoni-
an to provide more biological realism, for example the
definition of mesoglea or the introduction of time- or
situation-dependent surface energies. Another possibility
is to introduce additional quantum numbers to the energy
term or layers to the simulation lattice, e.g., to add orien-
tation dependence, cell polarity, or to enforce a connect-
ed, conserved cell membrane. However, such changes
would reduce the analogy to other physical systems. We
could also include in a simple fashion, cell growth and
mitosis by varying the cells’s target area and subdividing
overlarge or overly oblate cells. Our goal is to describe
more complex morphogenic phenomena, like cavity for-
mation or the initiation of organ formation.

The current model suggests several biological experi-
ments. At a fundamental level, the effective temperature
of cell membrane fluctuations and the nature of the cell-
cell adhesion energy need to be clarified [14]. For exam-
ple, what are the changes in cell-cell adhesivity as a func-
tion of contact time? To validate our model, additional
quantitative observations of the time scales of cell sorting
like those of Technau and Holstein [15] (in particular, the
scaling laws for correlations and boundary lengths and
the relative timings of bulk sorting and monolayer forma-
tion) and of the topological moment distributions of bio-
logical tissues should allow quantitative comparisons
with our analysis.
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(b)

(c)

FIG. 10. Cell sorting. Observations by Armstrong of cell
sorting between pigmented (dark) and neural (light) retinal cells
in seventh-day chick embryo in three-dimensional suspended
aggregates. Reprinted with permission from P. Armstrong,
Crit. Rev. Biochem. and Mol. Biol. 24, 119 (1989). Copyright
CRC Press, Inc., Boca Raton, FL. (a) Random mixing at 5 h.
(b) Partial cell sorting at 19 h. (c) Complete cell sorting at 48 h.
Armstrong notes that the detached dark cells in (b) and (c) are
dead. Pictures show two-dimensional sections of three-
dimensional aggregates.
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FIG. 12. Cell sorting. Simulation. J; =14, J,, =2, J; =11, Jyy =J g =16 (yielding ¥4 =3, ¥y =9, Yapr =15), T=10, and A=1,
random initial cell type assignment. (a) 0 MCS. (b) 10 MCS. (c) 100 MCS. (d) 1000 MCS. (e) 3000 MCS. (f) 4000 MCS. (g) 5000

MCS. (h) 13500 MCS. Patterns are displayed after two MCS of T =0 annealing.
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(Continued).

FIG. 12.



FIG. 17. Engulfment. Observation by Armstrong of cell
engulfment of heat cells (light) by pigmented retinal cells (dark)
from tenth-day chicken embryo in three-dimensional suspended
aggregates. Reprinted with permission from P. Armstrong,
Crit. Rev. Biochem. and Mol. Biol. 24, 119 (1989). Copyright
CRC Press, Inc.,, Boca Raton, FL. Figure shows a two-
dimensional section of a three-dimensional culture after 48 h.
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FIG. 20. Position reversal. Simulation. J; =14, J;,, =30, J44, =2, J 5, =16, J;; =11 (yielding ¥, =3, ¥y =23, yuu =15), T =10,
and A=1, random initial cell type assignment. (a) Initial condition, 0 MCS. (b) 50 MCS. (c) 5000 MCS. (d) 5000 MCS.
{(n)=6.08+0.03, £, =0.71+0.06, ;=0.24+0. 14, u,=2.40+0.65. Patterns are displayed after two MCS of T'=0 annealing.



FIG. 22. Partial cell sorting. Simulation. J; =11, Jyu =2, J;3 =14, J;py =J 40 = 16 (yielding y 4 =7.5, ¥y = 10.5, y gy =15), T =5,
A=1, random initial cell type assignment. (a) 10 MCS, (b) 100 MCS, (c) 1000 MCS, (d) 2000 MCS. Patterns are displayed after two
MCS of T =0 annealing.



el
W v e n ol
FIG. 25. Cell dispersal. Simulation. J;=14, Jz =4,
de =1 l, JLM’ =2, JdM =16 (yleldmg Y d =2, YiM= _5, Yam= 14),
T =S5, and A=1, random initial cell type assignment. 480 MCS.
Dark cells remain compact and round, light cells in contact
with the medium disperse. Displayed pattern is unannealed.



FIG. 26. Cell dispersal. Simulation. J,=14, J; =2,
Jia=35, Jiy=Jayy=16 (yielding v,y =27, ypy=9, van=15),
T =5, and A=1, random initial cell type assignment. 2000
MCS. Both light and dark cells remain compact and round, but
the clusters separate. A few isolated dark cells also occur. Pat-
tern is displayed after two MCS of T'=0 annealing.



FIG. 27. Cell dispersal. Simulation. J;=14, J;,;=2,
J1a=129, Jiy=Ja =16 (yielding v,u =21, vy =9, vau=15),
T'=5, and A=1, random initial cell type assignment. 2000
MCS. Both light and dark cells remain compact and round,
clusters do not separate. The result is an extreme case of partial
cell sorting. Pattern is displayed after two MCS of T'=0 an-
nealing.



FIG. 28. Vacancy nucleation. Simulation. J,=14, J,,=2,
er =1 l, Jf_\,’- =Jd.\d' =16 (yleldmg Y :3, Yim :9, Yau= ]5),
T=5, A=1, A,=20, and A,=40, random initial cell type as-
signment. 200 MCS. The constraint on vacancy nucleation is
removed and a light-cell-lined, fluid-filled central cavity forms.
Pattern is displayed after two MCS of T =0 annealing.



FIG. 6. Checkerboard. Japanese quail oviduct epithelium,
photographed by Honda, Yamanaka, and Eguchi, reprinted
with permission from H. Honda, H. Yamanaka, and G. Eguchi,
J. Embryol. Exp. Morph. 98, 1 (1986). Copyright Company of
Biologists, Ltd., Cambridge, England. (a) and (c) Immature ovi-

duct. (b) and (d) Mature oviduct after the division of each ciliat-
ed (dark) cell.
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FIG. 7. Checkerboard. Simulation. J;=10, J4;=8, Ji;=6, Jyyy =J 4 =12 (yielding y;u=—3, ¥iu=7, Yar=8), T =10, and
A =1, random initial cell type assignment. (a) 10 MCS, (b) 100 MCS, (c) 1000 MCS, (d) 2000 MCS. Patterns are displayed after two
MCS of T'=0 annealing.



