Aller au menu
Aller au pied de page
Retour vers Logarithmie

Cryptarithmes

Solution

Il y a 38 solutions :

0123456789
EZIMOTR
342 + 742 = 1084
0123456789
ZIEOMTR
642 + 742 = 1384
0123456789
ZIOEMRT
642 + 942 = 1584
0123456789
EZITOMR
742 + 342 = 1084
0123456789
ZIEOTMR
742 + 642 = 1384
0123456789
ZIOEMRT
742 + 942 = 1684
0123456789
ZIOETRM
942 + 642 = 1584
0123456789
ZIOETRM
942 + 742 = 1684
0123456789
EZRIMTO
463 + 563 = 1026
0123456789
EZRITMO
563 + 463 = 1026
0123456789
ZRIEMOT
563 + 863 = 1426
0123456789
ZRIETOM
863 + 563 = 1426
0123456789
EZMIRTO
284 + 784 = 1068
0123456789
ZEIMRTO
584 + 784 = 1368
0123456789
EZTIRMO
784 + 284 = 1068
0123456789
ZEITRMO
784 + 584 = 1368
0123456789
EZOMRIT
326 + 726 = 1052
0123456789
ZOEMRIT
426 + 926 = 1352
0123456789
EZOTRIM
726 + 326 = 1052
0123456789
ZORIEMT
826 + 926 = 1752
0123456789
ZOETRIM
926 + 426 = 1352
0123456789
ZORIETM
926 + 826 = 1752
0123456789
EZMOITR
247 + 847 = 1094
0123456789
ZEOMITR
547 + 847 = 1394
0123456789
EZTOIMR
847 + 247 = 1094
0123456789
ZEOTIMR
847 + 547 = 1394
0123456789
EZMROTI
268 + 768 = 1036
0123456789
EZRMTOI
468 + 568 = 1036
0123456789
ZERMOTI
468 + 768 = 1236
0123456789
EZRTMOI
568 + 468 = 1036
0123456789
EZTROMI
768 + 268 = 1036
0123456789
ZERTOMI
768 + 468 = 1236
0123456789
EZMTROI
389 + 689 = 1078
0123456789
EZMTROI
489 + 589 = 1078
0123456789
EZTMROI
589 + 489 = 1078
0123456789
ZEMTROI
589 + 689 = 1278
0123456789
EZTMROI
689 + 389 = 1078
0123456789
ZETMROI
689 + 589 = 1278

Entrez un cryptarithme


S'il y a des chiffres dans le cryptarithme :

Qu'est-ce qu'un cryptarithme ?

Un cryptarithme (en anglais : cryptarithm, cryptarithmic, cryptarithmetic, alphametic, etc.) est une opération arithmétique dans laquelle chaque chiffre a été remplacé par une lettre. Il y a une correspondance bi-univoque entre lettres et chiffres : une même lettre représente toujours le même chiffre, deux lettres différentes représentent deux chiffres différents. Le but du jeu est, à partir de l'opération en lettres, de trouver une correspondance entre lettres et chiffres qui donne un résultat exact.

En général un cryptarithme se présente sous la forme d'une égalité, par exemple : ABC + ACD = CEE (dont une des solutions est : A→3, B→4, C→7, D→5, E→2, qui donne 347 + 375 = 722). Cependant, sur la présente page ce peut être une expression beaucoup plus générale.

Pour certains amateurs, un cryptarithme doit obligatoirement possèder une solution unique (une seule substitution des lettres par des chiffres donne une opération exacte). Les exemples de cette page ne respectent pas tous cette règle, lorsque c'est le cas ils sont marqués du symbole ¤.

Comment résoudre un cryptarithme ?

Prenons un exemple très simple :

         AB
      +  BA
      = CBC

Dans la colonne du milieu, on voit qu'en ajoutant A et B on obtient B. A ne peut pas valoir 0 car il est en tête du premier nombre (et d'ailleurs si A valait 0, dans la colonne de droite la somme B + 0 vaudrait B et non C). La seule possibilité est donc A→9 et il doit y avoir une retenue venant de la colonne de droite : B + 9 + 1(retenue) = B + 10 donne bien B, avec une retenue de 1. Le C de la colonne de gauche vient de cette retenue, donc C→1. En revenant à la colonne de droite, on voit que 9 + B = 11 (soit C, qui vaut 1, et une retenue de 1), donc B→2. Le cryptarithme est résolu : A→9, B→2, C→1 et l'opération 92 + 29 = 121 est exacte.

La résolution est habituellement beaucoup plus compliquée, tout en relevant du même principe général. On est souvent obligé de faire des hypothèses sur certaines valeurs, d'en tirer toutes les conséquences, puis de revenir en arrière si on aboutit à une contradiction.

Une méthode bien plus simple consiste à écrire le cryptarithme dans la case en haut de cette page, cliquer sur « Résoudre » et attendre quelques secondes que la ou les solutions s'affichent.

Quelques exemples

Les cryptarithmes les plus intéressants sont ceux dont les mots ont un rapport entre eux, voire forment une phrase. Le plus connu de ce genre est censé être une lettre envoyée par un étudiant désargenté à ses parents : SEND + MORE = MONEY ¤ (send more money signifie « envoyez plus d'argent » en anglais). Ci-dessous d'autres exemples qui ont été trouvés par des amis ou par moi-même. En cliquant sur un cryptarithme il sera automatiquement copié dans la case en haut de cette page et vous verrez sa solution. Le symbole ¤ signifie que la solution est unique. Le nom indiqué entre parenthèses est celui de la personne qui me l'a signalé, qui n'est pas forcément l'auteur. Si vous en trouvez d'autres qui vous semblent dignes d'intérêt, notamment s'ils ne sont pas de simples additions, envoyez-les moi.

Cryptarithmes arithmétiques

Un cas particulier très prisé des amateurs est celui des opérations écrites en toutes lettres, qui sont exactes aussi bien quand on les lit en français que quand on les interprète comme des cryptarithmes. Par exemple NEUF + UN + UN = ONZE est vrai, et le reste si on effectue les substitutions E→9, F→7, N→1, O→2, U→8, Z→4 pour obtenir 1987 + 81 + 81 = 2149. En voici d'autres exemples :

Quel est le plus long cryptarithme ?

Le 29 novembre 2005, Éric Angelini annonça qu'il avait découvert (avec l'aide de Don Reble) un cryptarithme à solution unique comportant plus de neuf septillions de termes ! Ce record est présenté et expliqué en détail sur le site d'Éric.

La question se posa alors de savoir s'il existait des cryptarithmes de longueur aussi grande que l'on veut. En s'appuyant sur le résultat précédent et sur la nomenclature de Conway et Wechsler qui permet de donner un nom à tous les nombres entiers sans aucune limite, Patrick Coilland a répondu positivement le 4 décembre 2005. Son cryptarithme extensible à l'infini se présente ainsi :

UN_TRILLINILLINILLI...NILLITRILLION + HUIT + ZERO + ZERO + ... + ZERO = UN_TRILLINILLINILLI...NILLITRILLION_HUIT
(Le caractère « souligné » relie les mots qui sont normalement séparés dans l'écriture des nombres mais doivent être accolés pour le cryptarithme.)

L'élément NILLI apparaît p fois dans chacun des grands nombres, et le mot ZERO apparaît 573065554043040430...40430881555640 fois (la suite 40430 figure p fois dans ce nombre). Pour chaque valeur de p on obtient un cryptarithme différent, dont la solution unique est :

0123456789
NZIHOELTRU

Trois jours plus tard, Patrick Coilland améliorait encore cette performance avec un cryptarithme extensible à l'infini n'utilisant pas le ZERO. Ce cryptarithme « parfait » (forme « classique » avec une somme à gauche et un seul terme à droite, solution unique, pas de ZERO et nombre de termes non limité) se présente ainsi :

UN + UN + ... + UN + SIX + SIX + ... + SIX + SIX_TRILLINILLINILLI...NILLIMILLIONS = SIX_TRILLINILLINILLI...NILLIMILLIONS_SIX_TRILLINILLINILLI...NILLIMILLIONS

où les nombres de UN, de SIX et de NILLI doivent respecter des relations précises qui sont explicitées au bas de la page déjà citée d'Éric Angelini.

D'autres sites

Il existe de très nombreux sites Web en anglais consacrés aux cryptarithmes, avec ou sans possibilité de les résoudre « en ligne ». Vous pouvez commencer par exemple par celui de Naoyuki Tamura puis suivre ses liens.

Robert B. Israel propose une applet pour résoudre les cryptarithmes (qu'il appelle « alphametic ») faisant intervenir les quatre opérations et les puissances.

Pour composer vos propres cryptarithmes avec les mots qui vous intéressent, voyez le site de Truman Collins. Il comprend un générateur de problèmes très puissant ainsi qu'une vaste collection de cryptarithmes, y compris certains trouvés dans la Bible ou les œuvres de Shakespeare.


© Nicolas Graner – 2004 & 2013

Menu de navigation

Pied de page

Contacter l'auteur.

Cette page http://graner.net/nicolas/nombres/crypt.php respecte les standards XHTML 1.0 strict et CSS 3.
Dernière modification le 09/05/2014.